Suppr超能文献

利用Cholesky分解密度和衰减库仑度量在随机相位近似内进行低尺度、高效且内存优化的核磁共振屏蔽计算。

Low-Scaling, Efficient and Memory Optimized Computation of Nuclear Magnetic Resonance Shieldings within the Random Phase Approximation Using Cholesky-Decomposed Densities and an Attenuated Coulomb Metric.

作者信息

Drontschenko Viktoria, Ochsenfeld Christian

机构信息

Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.

Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany.

出版信息

J Phys Chem A. 2024 Sep 19;128(37):7950-7965. doi: 10.1021/acs.jpca.4c02773. Epub 2024 Sep 6.

Abstract

An efficient method for the computation of nuclear magnetic resonance (NMR) shielding tensors within the random phase approximation (RPA) is presented based on our recently introduced resolution-of-the-identity (RI) atomic orbital RPA NMR method [Drontschenko, V. 2023, 19, 7542-7554] utilizing Cholesky decomposed density type matrices and employing an attenuated Coulomb RI metric. The introduced sparsity is efficiently exploited using sparse matrix algebra. This allows for an efficient and low-scaling computation of RPA NMR shielding tensors. Furthermore, we introduce a batching method for the computation of memory demanding intermediates that accounts for their sparsity. This extends the applicability of our method to even larger systems that would have been out of reach before, such as, e.g., a DNA strand with 260 atoms and 3408 atomic orbital basis functions.

摘要

基于我们最近提出的利用Cholesky分解密度型矩阵并采用衰减库仑恒等式度量的恒等式解析(RI)原子轨道随机相位近似(RPA)核磁共振(NMR)方法[Drontschenko, V. 2023, 19, 7542 - 7554],提出了一种在随机相位近似(RPA)内计算核磁共振(NMR)屏蔽张量的有效方法。利用稀疏矩阵代数有效地利用了引入的稀疏性。这使得RPA NMR屏蔽张量能够进行高效且低尺度的计算。此外,我们引入了一种用于计算内存需求大的中间体的批处理方法,该方法考虑了它们的稀疏性。这将我们方法的适用性扩展到了以前无法处理的更大系统,例如具有260个原子和3408个原子轨道基函数的DNA链。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6ef/11421095/663894c581b6/jp4c02773_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验