Suppr超能文献

StatsPro:用于检测无标记定量蛋白质组学中差异表达的统计方法的系统集成和评估。

StatsPro: Systematic integration and evaluation of statistical approaches for detecting differential expression in label-free quantitative proteomics.

机构信息

Department of Clinical Research Management, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.

Institutes for Systems Genetics and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.

出版信息

J Proteomics. 2022 Jan 6;250:104386. doi: 10.1016/j.jprot.2021.104386. Epub 2021 Sep 30.

Abstract

Quantitative label-free mass spectrometry (MS) is an increasingly powerful technology for profiling thousands of proteins from complex biological samples. One of the primary goals of analyses performed on such proteomics data is to detect differentially expressed proteins (DEPs) under different experimental conditions. Many statistical methods have been developed and assessed for DEP detection in various proteomics studies. However, it remains a challenge for many proteomics scientists to choose an appropriate statistical procedure. Therefore, in this study, we organized 12 common testing algorithms and 6 P-value combination methods and further provided Cohen's d effect size for every protein and three evaluation criteria to help proteomics scientists investigate their influence on DEP detection in a systematic manner. To promote the widespread use of these methods, we developed a user-friendly web tool, StatsPro, and presented two case studies involving label-free quantitative proteomics data obtained using data-dependent acquisition and data-independent acquisition to illustrate its practicability. This tool is freely available in our GitHub repository (https://github.com/YanglabWCH/StatsPro/). SIGNIFICANCE: One of the primary goals of analyses performed on liquid chromatography-mass spectrometry (LC-MS) based proteomics data is to detect differentially expressed proteins (DEPs) under different experimental conditions. Despite of many research efforts have been proposed to detect DEPs, to date, there is a scarcity of efficient, systematic, and easy-to-handle tools that are tailored for proteomics scientists to choose an appropriate statistical procedure. Herein, we present a new tool, StatsPro, to enable implementation and evaluation of different statistical methods for proteomics scientists. This tool has two significant advances compared to existing software: a) It integrates up to 18 common statistical approaches (12 statistical tests and 6 P-value combination strategies) and performs Cohen's d effect size systematically for users, moreover, it provides a web-based interface and can be quite conveniently operated by users, even those with less profound computational background. b) It supports three performance evaluation criteria (e.g. number of DEPs, correlation coefficient between P-values and effect sizes, Area under the ROC curve) for users to review the final statistical results, which may guide the method selection for DEPs detection.

摘要

定量无标记质谱(MS)是一种日益强大的技术,可用于分析来自复杂生物样本的数千种蛋白质。对这些蛋白质组学数据进行分析的主要目标之一是检测不同实验条件下差异表达的蛋白质(DEPs)。已经开发并评估了许多统计方法来检测各种蛋白质组学研究中的 DEP。然而,对于许多蛋白质组学科学家来说,选择合适的统计程序仍然是一个挑战。因此,在这项研究中,我们组织了 12 种常见的测试算法和 6 种 P 值组合方法,并进一步为每个蛋白质提供了 Cohen's d 效应大小以及三个评估标准,以帮助蛋白质组学科学家以系统的方式研究它们对 DEP 检测的影响。为了促进这些方法的广泛使用,我们开发了一个用户友好的网络工具 StatsPro,并提供了两个涉及使用数据依赖采集和数据独立采集获得的无标记定量蛋白质组学数据的案例研究,以说明其实用性。该工具可在我们的 GitHub 存储库(https://github.com/YanglabWCH/StatsPro/)中免费获得。意义:基于液相色谱-质谱(LC-MS)的蛋白质组学数据进行分析的主要目标之一是检测不同实验条件下差异表达的蛋白质(DEPs)。尽管已经提出了许多研究来检测 DEP,但迄今为止,还缺乏针对蛋白质组学科学家的高效、系统且易于处理的工具,以选择合适的统计程序。在这里,我们提出了一个新的工具,StatsPro,使蛋白质组学科学家能够实施和评估不同的统计方法。与现有软件相比,该工具具有两个显著优势:a)它集成了多达 18 种常见的统计方法(12 种统计检验和 6 种 P 值组合策略),并为用户系统地执行 Cohen's d 效应大小,此外,它提供了一个基于网络的界面,即使是计算背景较弱的用户也可以方便地操作。b)它支持用户查看最终统计结果的三个性能评估标准(例如,DEP 的数量、P 值和效应大小之间的相关系数、ROC 曲线下的面积),这可能有助于指导 DEP 检测方法的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验