Boddy Amy M, Harrison Peter W, Montgomery Stephen H, Caravas Jason A, Raghanti Mary Ann, Phillips Kimberley A, Mundy Nicholas I, Wildman Derek E
The Biodesign Institute, Arizona State University, Tempe, AZ.
Wayne State University School of Medicine, Center for Molecular Medicine and Genetics, Detroit, Michigan, Detroit, MI.
Genome Biol Evol. 2017 Mar 1;9(3):700-713. doi: 10.1093/gbe/evx028.
The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene-phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene-phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution.
人类大脑进化的适应性意义常常通过与其他灵长类动物进行比较来研究。然而,脑容量增加的进化并不局限于人类谱系,而是灵长类动物进化的一个普遍特征。目前尚不清楚这些独立的脑容量增加事件是否共享一个共同的遗传基础。我们对脑化程度最高的非人类灵长类动物——簇绒卷尾猴(僧帽猴)的新皮质组织进行了转录组测序和从头组装。利用这个新数据集,我们对直系同源的脑表达蛋白质编码基因进行了全基因组分析,以确定在脑容量增加的三个独立事件中保守的基因-表型关联和物种特异性适应的证据。我们发现,与这六个物种的全脑质量或相对脑容量相关的基因数量,比在单个大脑袋谱系中显示出物种特异性加速进化速率的基因数量更多。我们通过置换检验,并分析全基因组替代模式与脑容量如何协变,在一个包含13个物种的扩展数据集中测试了这些关联的稳健性。在大脑扩张过程中受到选择的许多基因具有谷氨酸能功能或在细胞周期动力学中发挥作用。我们还在一些卷尾猴个体基因中发现了加速进化,这些基因的人类直系同源基因与人类神经精神疾病有关。这些发现证明了基于表型的基因组分析的价值,并表明人类大脑进化的至少某些方面是通过保守的基因-表型关联发生的。理解这些共性对于区分人类特有的选择事件和大脑进化的一般趋势至关重要。