Studnicka G M
International Genetic Engineering, Inc., Santa Monica, CA 90404.
Comput Appl Biosci. 1987 Mar;3(1):9-16. doi: 10.1093/bioinformatics/3.1.9.
Hyperbolic regression analysis is an effective method for fitting experimental data points obtained from a variety of experiments in molecular biology, including enzyme kinetics, agarose gel electrophoresis of DNA fragments, SDS-polyacrylamide gel electrophoresis of proteins, enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA), Bradford protein quantitation assays, Lowry protein assays, and other applications. Hyperbolic regression yields excellent fitted curves without the biases that are introduced by carrying out linear regression on double reciprocal coordinates, and it produces one simple equation, encompassing all the data points, that can be used easily in a pocket calculator to estimate the values of unknown samples from the known standards.
双曲线回归分析是一种有效的方法,用于拟合从分子生物学中的各种实验获得的实验数据点,包括酶动力学、DNA片段的琼脂糖凝胶电泳、蛋白质的SDS-聚丙烯酰胺凝胶电泳、酶联免疫吸附测定(ELISA)、放射免疫测定(RIA)、Bradford蛋白质定量测定、Lowry蛋白质测定以及其他应用。双曲线回归产生出色的拟合曲线,而不会出现通过在双倒数坐标上进行线性回归所引入的偏差,并且它产生一个包含所有数据点的简单方程,该方程可轻松用于袖珍计算器中,以根据已知标准估计未知样品的值。