Zhu Benwei, Ni Fang, Sun Yun, Ning Limin, Yao Zhong
1College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd, Nanjing, 211816 People's Republic of China.
2College of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China.
Biotechnol Biofuels. 2019 Jan 10;12:13. doi: 10.1186/s13068-019-1352-8. eCollection 2019.
The alginate oligosaccharides have been widely used in agriculture, medicine, and food industries due to their versatile physiological functions such as antioxidant, anticoagulant, and antineoplastic activities. The bifunctional alginate lyases can degrade the alginate polysaccharide more efficiently into alginate oligosaccharides. Therefore, it is crucial to discover new bifunctional alginate lyase for alginate oligosaccharide production.
Herein, a novel bifunctional alginate lyase FsAlgB was cloned and identified from deep-sea bacterium sp. NJ-04, which exhibited broad substrate specificity and the highest activity (1760.8 U/mg) at pH 8.0 and 40 °C. Furthermore, the values of FsAlgB towards polyG (0.69 mM) and polyMG (0.92 mM) were lower than that towards sodium alginate (1.28 mM) and polyM (2.06 mM). Recombinant FsAlgB was further characterized as an endolytic alginate lyase, and it can recognize the tetrasaccharide as the minimal substrate and cleave the glycosidic bonds between the subsites of - 3 and + 1.
This study provided extended insights into the substrate recognition and degrading pattern of alginate lyases with broad substrate specificity.
由于藻酸盐寡糖具有抗氧化、抗凝和抗肿瘤等多种生理功能,已在农业、医药和食品工业中得到广泛应用。双功能藻酸盐裂解酶能够更有效地将藻酸盐多糖降解为藻酸盐寡糖。因此,发现用于生产藻酸盐寡糖的新型双功能藻酸盐裂解酶至关重要。
本文从深海细菌NJ-04中克隆并鉴定了一种新型双功能藻酸盐裂解酶FsAlgB,该酶具有广泛的底物特异性,在pH 8.0和40℃时活性最高(1760.8 U/mg)。此外,FsAlgB对聚G(0.69 mM)和聚MG(0.92 mM)的Km值低于对海藻酸钠(1.28 mM)和聚M(2.06 mM)的Km值。重组FsAlgB被进一步鉴定为一种内切藻酸盐裂解酶,它可以识别四糖作为最小底物,并切割-3和+1亚位点之间的糖苷键。
本研究为深入了解具有广泛底物特异性的藻酸盐裂解酶的底物识别和降解模式提供了新的见解。