Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark.
Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France.
Mol Ecol Resour. 2017 Sep;17(5):835-853. doi: 10.1111/1755-0998.12679. Epub 2017 May 12.
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.
海洋软体动物的壳中包含了大量有关沿海生物及其环境的信息。通过分析其壳的(微)结构和生物地球化学组成,可以追踪它们的生活史特征以及(古)环境条件,包括温度、食物供应、盐度和污染。此外,被困在壳碳酸盐生物矿化中的 DNA 可能为重建古环境和追踪软体动物进化轨迹提供一种新颖且互补的替代方法。在这里,我们通过对过去约 7000 年的海洋软体动物壳进行 DNA 提取、高通量鸟枪法 DNA 测序和宏基因组分析来评估这种潜力。我们报告了从各种古老样本中成功提取壳 DNA 的方法,并且发现 DNA 的回收高度依赖于它们的生物矿化结构、碳酸盐层保存状况和疾病状态。我们使用线粒体 DNA 基因组、条形码、基因组规模数据和宏基因组方法的组合,证明了对软体动物物种的分类鉴定。我们还发现壳生物矿化物中含有来自海洋环境的各种微生物 DNA。最后,我们从以前被诊断为布朗环病的马尼拉蛤壳中重建了与 Vibrio tapetis 细菌密切相关的生物的基因组序列。我们的结果揭示了海洋软体动物壳作为过去的新型遗传档案,这为古 DNA 研究开辟了新的视角,具有重建软体动物、微生物群落和病原体在环境变化面前的进化历史的潜力。未来的其他应用包括保护濒危软体动物物种和水产养殖管理。