Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany.
Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
Microbiome. 2023 Sep 25;11(1):210. doi: 10.1186/s40168-023-01647-2.
The terrestrial subsurface is home to a significant proportion of the Earth's microbial biomass. Our understanding about terrestrial subsurface microbiomes is almost exclusively derived from groundwater and porous sediments mainly by using 16S rRNA gene surveys. To obtain more insights about biomass of consolidated rocks and the metabolic status of endolithic microbiomes, we investigated interbedded limestone and mudstone from the vadose zone, fractured aquifers, and deep aquitards.
By adapting methods from microbial archaeology and paleogenomics, we could recover sufficient DNA for downstream metagenomic analysis from seven rock specimens independent of porosity, lithology, and depth. Based on the extracted DNA, we estimated between 2.81 and 4.25 × 10 cells × g rock. Analyzing DNA damage patterns revealed paleome signatures (genetic records of past microbial communities) for three rock specimens, all obtained from the vadose zone. DNA obtained from deep aquitards isolated from surface input was not affected by DNA decay indicating that water saturation and not flow is controlling subsurface microbial survival. Decoding the taxonomy and functional potential of paleome communities revealed increased abundances for sequences affiliated with chemolithoautotrophs and taxa such as Cand. Rokubacteria. We also found a broader metabolic potential in terms of aromatic hydrocarbon breakdown, suggesting a preferred utilization of sedimentary organic matter in the past.
Our study suggests that limestones function as archives for genetic records of past microbial communities including those sensitive to environmental stress at modern times, due to their specific conditions facilitating long-term DNA preservation. Video Abstract.
陆地地下是地球微生物生物量的重要栖息地。我们对陆地地下微生物组的了解几乎完全来自地下水和多孔沉积物,主要通过使用 16S rRNA 基因调查。为了更深入地了解固结岩石的生物量和内生微生物组的代谢状态,我们调查了来自非饱和带的交错灰岩和泥岩、断裂含水层和深部隔水层。
通过采用微生物考古学和古基因组学的方法,我们能够从七个独立于孔隙度、岩性和深度的岩石标本中回收足够的 DNA 进行下游宏基因组分析。基于提取的 DNA,我们估计每个岩石样本的细胞数为 2.81×10 到 4.25×10 个细胞×克岩石。分析 DNA 损伤模式揭示了三个来自非饱和带的岩石样本的古菌组特征(过去微生物群落的遗传记录)。从与地表输入隔离的深部隔水层中获得的 DNA 不受 DNA 衰变的影响,这表明水饱和而不是流动控制着地下微生物的存活。解码古菌组的分类和功能潜力表明,与化能自养菌和 Cand. Rokubacteria 等类群相关的序列丰度增加。我们还发现了芳香烃分解方面更广泛的代谢潜力,这表明过去更偏好利用沉积有机质。
我们的研究表明,由于特定的条件有利于长期 DNA 保存,灰岩作为过去微生物群落遗传记录的档案,包括那些对现代环境压力敏感的记录。视频摘要。