Suppr超能文献

特发性自闭症中胼胝体的部分发育不全和发育不良

Partial Agenesis and Hypoplasia of the Corpus Callosum in Idiopathic Autism.

作者信息

Wegiel Jarek, Flory Michael, Kaczmarski Wojciech, Brown W Ted, Chadman Kathryn, Wisniewski Thomas, Nowicki Krzysztof, Kuchna Izabela, Ma Shuang Yong, Wegiel Jerzy

机构信息

Departments of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.

Research Design and Analysis Services, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.

出版信息

J Neuropathol Exp Neurol. 2017 Mar 1;76(3):225-237. doi: 10.1093/jnen/nlx003.

Abstract

To test the hypothesis that developmental anomalies of the corpus callosum (CC), contribute to the pathogenesis of autism, we characterized the type, topography, and severity of CC pathology corresponding to reduced CC areas that are detected by magnetic resonance imaging in the brains of 11 individuals with autism and 11 controls. In the brains of 3 autistic subjects, partial CC agenesis resulted in complete or partial lack of interhemispheric axonal connections in CC segments III-V. In these cases, a combination of focal agenesis and uniform axonal deficit caused reduction of CC areas by 37%, of axon numbers by 62%, and of the numerical density of axons by 39%. In the CC of 8 autistic subjects without agenesis, there was an 18% deficit of the midsagittal CC area, 48.4% deficit of axon numbers, and 37% reduction of the numerical density of axons. The significantly thinner CC, reduced CC area, and uniform axonal deficit in all autistic subjects were classified as CC hypoplasia. Thus, the byproduct of partial CC agenesis and hypoplasia is reduction of axonal connections between cortical areas known to be involved in behavioral alterations observed in people with autism.

摘要

为了验证胼胝体发育异常(CC)导致自闭症发病机制的假说,我们对11名自闭症患者和11名对照者大脑中磁共振成像检测到的胼胝体面积减小所对应的CC病理类型、位置及严重程度进行了特征分析。在3名自闭症受试者的大脑中,部分胼胝体发育不全导致CC的III-V节段完全或部分缺乏半球间轴突连接。在这些病例中,局灶性发育不全和均匀性轴突缺失共同导致CC面积减少37%,轴突数量减少62%,轴突数量密度降低39%。在8名无发育不全的自闭症受试者的胼胝体中,矢状面中部胼胝体面积缺失18%,轴突数量缺失48.4%,轴突数量密度降低37%。所有自闭症受试者中明显变薄的胼胝体、减小的胼胝体面积和均匀性轴突缺失被归类为胼胝体发育不全。因此,部分胼胝体发育不全和发育不全的副产品是已知与自闭症患者行为改变有关的皮质区域之间轴突连接的减少。

相似文献

1
Partial Agenesis and Hypoplasia of the Corpus Callosum in Idiopathic Autism.
J Neuropathol Exp Neurol. 2017 Mar 1;76(3):225-237. doi: 10.1093/jnen/nlx003.
3
Agenesis of the corpus callosum and autism: a comprehensive comparison.
Brain. 2014 Jun;137(Pt 6):1813-29. doi: 10.1093/brain/awu070. Epub 2014 Apr 25.
5
Toddlers later diagnosed with autism exhibit multiple structural abnormalities in temporal corpus callosum fibers.
Cortex. 2017 Dec;97:291-305. doi: 10.1016/j.cortex.2016.12.024. Epub 2017 Jan 23.
6
Clinical manifestations in children and adolescents with corpus callosum abnormalities.
J Neurol. 2016 Oct;263(10):1939-45. doi: 10.1007/s00415-016-8225-x. Epub 2016 Jul 6.
7
9
Fetal corpus callosum abnormalities: Ultrasound and magnetic resonance imaging role.
J Clin Ultrasound. 2022 Sep;50(7):989-1003. doi: 10.1002/jcu.23212. Epub 2022 Apr 30.
10
Four Steps in Diagnosing Complete Agenesis of the Corpus Callosum in Prenatal Life.
Ultraschall Med. 2016 Feb;37(1):92-9. doi: 10.1055/s-0034-1385027. Epub 2015 Mar 3.

引用本文的文献

1
An evolutionarily conserved role for CTNNB1/β-CATENIN in regulating the development of the corpus callosum.
iScience. 2025 Aug 9;28(9):113335. doi: 10.1016/j.isci.2025.113335. eCollection 2025 Sep 19.
2
Modelling cell type-specific lncRNA regulatory network in autism with Cycle.
BMC Bioinformatics. 2024 Sep 27;25(1):307. doi: 10.1186/s12859-024-05933-0.
3
Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder.
Autism Res. 2024 Jul;17(7):1300-1321. doi: 10.1002/aur.3123. Epub 2024 Mar 18.
4
Genetic heterogeneity in corpus callosum agenesis.
Front Genet. 2022 Sep 30;13:958570. doi: 10.3389/fgene.2022.958570. eCollection 2022.
5
Identification of copy number variants in children and adolescents with autism spectrum disorder: a study from Turkey.
Mol Biol Rep. 2021 Nov;48(11):7371-7378. doi: 10.1007/s11033-021-06745-8. Epub 2021 Oct 12.
6
iPSC toolbox for understanding and repairing disrupted brain circuits in autism.
Mol Psychiatry. 2022 Jan;27(1):249-258. doi: 10.1038/s41380-021-01288-7. Epub 2021 Sep 8.
8
Corpus Callosum Agenesis: An Insight into the Etiology and Spectrum of Symptoms.
Brain Sci. 2020 Sep 9;10(9):625. doi: 10.3390/brainsci10090625.

本文引用的文献

2
Neuropathology of the anterior midcingulate cortex in young children with autism.
J Neuropathol Exp Neurol. 2014 Sep;73(9):891-902. doi: 10.1097/NEN.0000000000000108.
3
Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism.
Brain Res. 2013 May 28;1512:106-22. doi: 10.1016/j.brainres.2013.03.037. Epub 2013 Apr 2.
4
Corpus Callosum Area in Children and Adults with Autism.
Res Autism Spectr Disord. 2013;7(2):221-234. doi: 10.1016/j.rasd.2012.09.007. Epub 2012 Nov 1.
5
Autism traits in individuals with agenesis of the corpus callosum.
J Autism Dev Disord. 2013 May;43(5):1106-18. doi: 10.1007/s10803-012-1653-2.
7
Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism.
Acta Neuropathol. 2012 Jul;124(1):67-79. doi: 10.1007/s00401-012-0976-6. Epub 2012 Mar 31.
8
A two-year longitudinal MRI study of the corpus callosum in autism.
J Autism Dev Disord. 2012 Nov;42(11):2312-22. doi: 10.1007/s10803-012-1478-z.
9
Neuron number and size in prefrontal cortex of children with autism.
JAMA. 2011 Nov 9;306(18):2001-10. doi: 10.1001/jama.2011.1638.
10
Mortality in individuals with autism, with and without epilepsy.
J Child Neurol. 2011 Aug;26(8):932-9. doi: 10.1177/0883073811402203. Epub 2011 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验