Suppr超能文献

在尿路致病性大肠杆菌中,QseC的组氨酸残基是QseB与PmrB之间典型信号传导所必需的。

The Histidine Residue of QseC Is Required for Canonical Signaling between QseB and PmrB in Uropathogenic Escherichia coli.

作者信息

Breland Erin J, Zhang Ellisa W, Bermudez Tomas, Martinez Charles R, Hadjifrangiskou Maria

机构信息

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

J Bacteriol. 2017 Aug 22;199(18). doi: 10.1128/JB.00060-17. Print 2017 Sep 15.

Abstract

Two-component systems are prototypically comprised of a histidine kinase (sensor) and a response regulator (responder). The sensor kinases autophosphorylate at a conserved histidine residue, acting as a phosphodonor for subsequent phosphotransfer to and activation of a cognate response regulator. In rare cases, the histidine residue is also essential for response regulator dephosphorylation via a reverse-phosphotransfer reaction. In this work, we present an example of a kinase that relies on reverse phosphotransfer to catalyze the dephosphorylation of its cognate partner. The QseC sensor kinase is conserved across several Gram-negative pathogens; its interaction with its cognate partner QseB is critical for maintaining pathogenic potential. Here, we demonstrate that QseC-mediated dephosphorylation of QseB occurs via reverse phosphotransfer. In previous studies, we demonstrated that, in uropathogenic , exposure to high concentrations of ferric iron (Fe) stimulates the PmrB sensor kinase. This stimulation, in turn, activates the cognate partner, PmrA, and noncognate QseB to enhance tolerance to polymyxin B. We demonstrate that in the absence of signal, kinase-inactive QseC variants, in which the H246 residue was changed to alanine (A) aspartate (D) or leucine (L), rescued a Δ deletion mutant, suggesting that QseC can control QseB activation via a mechanism that is independent of reverse phosphotransfer. However, in the presence of Fe, the same QseC variants were unable to mediate a wild-type stimulus response, indicating that QseC-mediated dephosphorylation is required for maintaining proper QseB-PmrB-PmrA interactions. Two-component signaling networks constitute one of the predominant methods by which bacteria sense and respond to their changing environments. Two-component systems allow bacteria to thrive and survive in a number of different environments, including within a human host. Uropathogenic , the causative agent of urinary tract infections, rely on two interacting two-component systems, QseBC and PmrAB, to induce intrinsic resistance to the colistin antibiotic polymyxin B, which is a last line of defense drug. The presence of one sensor kinase, QseC, is required to regulate the interaction between the other sensor kinase, PmrB and the response regulators from both systems, QseB and PmrA, effectively creating a "four-component" system required for virulence. Understanding the important role of the sensor kinase QseC will provide insight into additional ways to therapeutically target uropathogens that harbor these signaling systems.

摘要

双组分系统通常由一个组氨酸激酶(传感器)和一个反应调节因子(响应器)组成。传感器激酶在一个保守的组氨酸残基上进行自身磷酸化,作为后续磷酸转移的磷酸供体,进而磷酸化并激活同源反应调节因子。在极少数情况下,组氨酸残基对于通过反向磷酸转移反应使反应调节因子去磷酸化也至关重要。在这项研究中,我们展示了一个依赖反向磷酸转移来催化其同源伴侣去磷酸化的激酶实例。QseC传感器激酶在多种革兰氏阴性病原体中保守;它与其同源伴侣QseB的相互作用对于维持致病潜力至关重要。在这里,我们证明QseC介导的QseB去磷酸化是通过反向磷酸转移发生的。在先前的研究中,我们证明,在尿路致病性大肠杆菌中,暴露于高浓度的铁离子(Fe)会刺激PmrB传感器激酶。这种刺激进而激活同源伴侣PmrA和非同源的QseB,以增强对多粘菌素B的耐受性。我们证明,在没有信号的情况下,激酶失活的QseC变体(其中H246残基被替换为丙氨酸(A)、天冬氨酸(D)或亮氨酸(L))挽救了一个Δ缺失突变体,这表明QseC可以通过一种独立于反向磷酸转移的机制来控制QseB的激活。然而,在有铁离子存在的情况下,相同的QseC变体无法介导野生型刺激反应,这表明QseC介导的去磷酸化对于维持适当的QseB - PmrB - PmrA相互作用是必需的。双组分信号网络是细菌感知并响应其不断变化的环境的主要方式之一。双组分系统使细菌能够在许多不同的环境中生存和繁衍,包括在人类宿主内。尿路致病性大肠杆菌是尿路感染的病原体,它依赖两个相互作用的双组分系统QseBC和PmrAB来诱导对多粘菌素B(一种最后防线药物)的内在抗性。一个传感器激酶QseC的存在对于有效调节另一个传感器激酶PmrB与来自这两个系统的反应调节因子QseB和PmrA之间的相互作用是必需的,从而有效地创建了一个毒力所需的“四组分”系统。了解传感器激酶QseC的重要作用将为治疗靶向携带这些信号系统的尿路病原体提供更多思路。

相似文献

2
Strong cross-system interactions drive the activation of the QseB response regulator in the absence of its cognate sensor.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16592-7. doi: 10.1073/pnas.1315320110. Epub 2013 Sep 23.
5
QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli.
Mol Microbiol. 2009 Sep;73(6):1020-31. doi: 10.1111/j.1365-2958.2009.06826.x. Epub 2009 Aug 23.

引用本文的文献

2
Mapping niche-specific two-component system requirements in uropathogenic .
Microbiol Spectr. 2024 Apr 2;12(4):e0223623. doi: 10.1128/spectrum.02236-23. Epub 2024 Feb 22.
5
Roles of qseC mutation in bacterial resistance against anti-lipopolysaccharide factor isoform 3 (ALFPm3).
PLoS One. 2023 Jun 2;18(6):e0286764. doi: 10.1371/journal.pone.0286764. eCollection 2023.
7
sp. nov.: a New Multidrug-Resistant Species Isolated from a Patient in Brazil.
Microbiol Spectr. 2023 Jun 15;11(3):e0441522. doi: 10.1128/spectrum.04415-22. Epub 2023 Apr 17.
9
Clinical and Genomic Epidemiology of -Carrying Carbapenem-Resistant Isolates in Metropolitan Atlanta, 2012 to 2017.
Microbiol Spectr. 2022 Aug 31;10(4):e0252221. doi: 10.1128/spectrum.02522-21. Epub 2022 Jul 20.
10
Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents.
Chem Biol Drug Des. 2021 Dec;98(6):1038-1064. doi: 10.1111/cbdd.13962. Epub 2021 Oct 4.

本文引用的文献

2
Molecular Mechanisms of Two-Component Signal Transduction.
J Mol Biol. 2016 Sep 25;428(19):3752-75. doi: 10.1016/j.jmb.2016.08.003. Epub 2016 Aug 9.
3
A set of powerful negative selection systems for unmodified Enterobacteriaceae.
Nucleic Acids Res. 2015 Jul 27;43(13):e83. doi: 10.1093/nar/gkv248. Epub 2015 Mar 23.
4
Strong cross-system interactions drive the activation of the QseB response regulator in the absence of its cognate sensor.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16592-7. doi: 10.1073/pnas.1315320110. Epub 2013 Sep 23.
5
The role of lipid domains in bacterial cell processes.
Int J Mol Sci. 2013 Feb 18;14(2):4050-65. doi: 10.3390/ijms14024050.
7
Evolution of two-component signal transduction systems.
Annu Rev Microbiol. 2012;66:325-47. doi: 10.1146/annurev-micro-092611-150039. Epub 2012 Jun 28.
9
Intrinsic negative feedback governs activation surge in two-component regulatory systems.
Mol Cell. 2012 Feb 10;45(3):409-21. doi: 10.1016/j.molcel.2011.12.027.
10
Histidine kinases and response regulators in networks.
Curr Opin Microbiol. 2012 Apr;15(2):118-24. doi: 10.1016/j.mib.2011.11.009. Epub 2011 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验