Suppr超能文献

用于测量单细胞应变能密度函数的细胞双轴拉伸

Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function.

作者信息

Win Zaw, Buksa Justin M, Steucke Kerianne E, Gant Luxton G W, Barocas Victor H, Alford Patrick W

机构信息

Department of Biomedical Engineering, University of Minnesota-Twin Cities, 312 Church Street SE NHH 7-105, Minneapolis, MN 55455 e-mail:

Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, 420 Washington Avenue SE MCB 4-128, Minneapolis, MN 55455 e-mail:

出版信息

J Biomech Eng. 2017 Jul 1;139(7):0710061-07100610. doi: 10.1115/1.4036440.

Abstract

The stress in a cell due to extracellular mechanical stimulus is determined by its mechanical properties, and the structural organization of many adherent cells suggests that their properties are anisotropic. This anisotropy may significantly influence the cells' mechanotransductive response to complex loads, and has important implications for development of accurate models of tissue biomechanics. Standard methods for measuring cellular mechanics report linear moduli that cannot capture large-deformation anisotropic properties, which in a continuum mechanics framework are best described by a strain energy density function (SED). In tissues, the SED is most robustly measured using biaxial testing. Here, we describe a cellular microbiaxial stretching (CμBS) method that modifies this tissue-scale approach to measure the anisotropic elastic behavior of individual vascular smooth muscle cells (VSMCs) with nativelike cytoarchitecture. Using CμBS, we reveal that VSMCs are highly anisotropic under large deformations. We then characterize a Holzapfel-Gasser-Ogden type SED for individual VSMCs and find that architecture-dependent properties of the cells can be robustly described using a formulation solely based on the organization of their actin cytoskeleton. These results suggest that cellular anisotropy should be considered when developing biomechanical models, and could play an important role in cellular mechano-adaptation.

摘要

细胞因细胞外机械刺激而产生的应力取决于其力学特性,许多贴壁细胞的结构组织表明它们的特性是各向异性的。这种各向异性可能会显著影响细胞对复杂载荷的机械转导反应,并对准确的组织生物力学模型的开发具有重要意义。测量细胞力学的标准方法报告的线性模量无法捕捉大变形各向异性特性,在连续介质力学框架中,这些特性最好用应变能密度函数(SED)来描述。在组织中,使用双轴测试可以最可靠地测量SED。在这里,我们描述了一种细胞微双轴拉伸(CμBS)方法,该方法改进了这种组织尺度的方法,以测量具有天然细胞结构的单个血管平滑肌细胞(VSMC)的各向异性弹性行为。使用CμBS,我们发现VSMC在大变形下具有高度各向异性。然后,我们为单个VSMC表征了一种Holzapfel-Gasser-Ogden型SED,并发现可以使用仅基于其肌动蛋白细胞骨架组织的公式来可靠地描述细胞的结构依赖性特性。这些结果表明,在开发生物力学模型时应考虑细胞各向异性,并且它可能在细胞机械适应中发挥重要作用。

相似文献

1
Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function.
J Biomech Eng. 2017 Jul 1;139(7):0710061-07100610. doi: 10.1115/1.4036440.
2
Large-deformation strain energy density function for vascular smooth muscle cells.
J Biomech. 2020 Oct 9;111:110005. doi: 10.1016/j.jbiomech.2020.110005. Epub 2020 Aug 28.
4
Architecture-Dependent Mechano-Adaptation in Single Vascular Smooth Muscle Cells.
J Biomech Eng. 2021 Oct 1;143(10). doi: 10.1115/1.4051117.
5
Architecture-Dependent Anisotropic Hysteresis in Smooth Muscle Cells.
Biophys J. 2018 Nov 20;115(10):2044-2054. doi: 10.1016/j.bpj.2018.09.027. Epub 2018 Oct 4.
6
Anisotropic Mechanics of Vascular Smooth Muscle Cells Exposed to Dynamic Loads.
J Biomech Eng. 2021 Dec 1;143(12). doi: 10.1115/1.4052224.
8
Empirically Determined Vascular Smooth Muscle Cell Mechano-Adaptation Law.
J Biomech Eng. 2017 Jul 1;139(7):0710051-9. doi: 10.1115/1.4036454.
9
Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells.
Biomed Microdevices. 2008 Dec;10(6):869-882. doi: 10.1007/s10544-008-9201-8.

引用本文的文献

1
A continuum model for tissues with moderate cell density.
Comput Biol Med. 2025 Aug 30;197(Pt A):111025. doi: 10.1016/j.compbiomed.2025.111025.
2
Biaxial length-tension relationship in single cardiac myocytes.
Biophys J. 2025 Sep 2;124(17):2865-2876. doi: 10.1016/j.bpj.2025.07.028. Epub 2025 Jul 28.
3
Adherent cells undergo rate softening mediated by actomyosin kinetics.
Biophys J. 2025 Sep 2;124(17):2840-2853. doi: 10.1016/j.bpj.2025.07.026. Epub 2025 Jul 25.
5
A computational bridge between traction force microscopy and tissue contraction.
J Appl Phys. 2023 Aug 21;134(7):074901. doi: 10.1063/5.0157507. Epub 2023 Aug 15.
6
A structural bio-chemo-mechanical model for vascular smooth muscle cell traction force microscopy.
Biomech Model Mechanobiol. 2023 Aug;22(4):1221-1238. doi: 10.1007/s10237-023-01713-6. Epub 2023 Apr 1.
7
Orientation of neurites influences severity of mechanically induced tau pathology.
Biophys J. 2021 Aug 17;120(16):3272-3282. doi: 10.1016/j.bpj.2021.07.011. Epub 2021 Jul 20.
8
Bimodal sensing of guidance cues in mechanically distinct microenvironments.
Nat Commun. 2018 Nov 20;9(1):4891. doi: 10.1038/s41467-018-07290-y.
9
Architecture-Dependent Anisotropic Hysteresis in Smooth Muscle Cells.
Biophys J. 2018 Nov 20;115(10):2044-2054. doi: 10.1016/j.bpj.2018.09.027. Epub 2018 Oct 4.

本文引用的文献

1
Mechanical plasticity of cells.
Nat Mater. 2016 Oct;15(10):1090-4. doi: 10.1038/nmat4689. Epub 2016 Jul 4.
2
Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis.
Nat Mater. 2016 Sep;15(9):961-967. doi: 10.1038/nmat4654. Epub 2016 May 30.
3
Nuclear deformability and telomere dynamics are regulated by cell geometric constraints.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E32-40. doi: 10.1073/pnas.1513189113. Epub 2015 Dec 22.
4
Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties.
J Biomech. 2015 Sep 18;48(12):3044-51. doi: 10.1016/j.jbiomech.2015.07.029. Epub 2015 Aug 7.
5
A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning.
Biomech Model Mechanobiol. 2016 Apr;15(2):293-316. doi: 10.1007/s10237-015-0687-8. Epub 2015 Jun 9.
6
Longitudinal and circumferential strain of the proximal aorta.
J Am Heart Assoc. 2014 Dec;3(6):e001536. doi: 10.1161/JAHA.114.001536.
8
A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro.
Biomech Model Mechanobiol. 2015 Aug;14(4):767-82. doi: 10.1007/s10237-014-0635-z. Epub 2014 Nov 28.
9
Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
Integr Biol (Camb). 2014 Dec;6(12):1201-10. doi: 10.1039/c4ib00193a. Epub 2014 Nov 3.
10
Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus.
Nat Cell Biol. 2014 Apr;16(4):376-81. doi: 10.1038/ncb2927. Epub 2014 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验