Suppr超能文献

在机械上不同的微环境中对导向线索进行双模态传感。

Bimodal sensing of guidance cues in mechanically distinct microenvironments.

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.

University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA.

出版信息

Nat Commun. 2018 Nov 20;9(1):4891. doi: 10.1038/s41467-018-07290-y.

Abstract

Contact guidance due to extracellular matrix architecture is a key regulator of carcinoma invasion and metastasis, yet our understanding of how cells sense guidance cues is limited. Here, using a platform with variable stiffness that facilitates uniaxial or biaxial matrix cues, or competing E-cadherin adhesions, we demonstrate distinct mechanoresponsive behavior. Through disruption of traction forces, we observe a profound phenotypic shift towards a mode of dendritic protrusion and identify bimodal processes that govern guidance sensing. In contractile cells, guidance sensing is strongly dependent on formins and FAK signaling and can be perturbed by disrupting microtubule dynamics, while low traction conditions initiate fluidic-like dendritic protrusions that are dependent on Arp2/3. Concomitant disruption of these bimodal mechanisms completely abrogates the contact guidance response. Thus, guidance sensing in carcinoma cells depends on both environment architecture and mechanical properties and targeting the bimodal responses may provide a rational strategy for disrupting metastatic behavior.

摘要

细胞外基质结构的接触导向是癌细胞侵袭和转移的关键调节因子,但我们对细胞如何感知导向线索的理解还很有限。在这里,我们使用一种具有可变刚度的平台,该平台可以促进单轴或双轴基质线索或竞争性 E-钙粘蛋白粘附,从而展示出不同的机械响应行为。通过破坏牵引力,我们观察到一种明显的表型转变,即树突状突起模式,并确定了控制导向感知的双峰过程。在收缩细胞中,导向感知强烈依赖于formin 和 FAK 信号,并且可以通过破坏微管动力学来干扰,而低牵引力条件会引发依赖于 Arp2/3 的流体样树突状突起。同时破坏这两种双峰机制会完全消除接触导向反应。因此,癌细胞中的导向感知既依赖于环境结构又依赖于机械性能,靶向双峰反应可能为破坏转移行为提供合理的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6244288/f845e352045b/41467_2018_7290_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验