Nicolay Alain, Lorec Anne-Marie, Gomez Guy, Portugal Henri
Faculté de Pharmacie, Aix Marseille Univ, APHM, Hôpital de la Conception, Service de Biochimie, UMR NORT INSERM 1062, INRA 1260, Marseille, France.
Faculté de Pharmacie, Aix Marseille Univ, APHM, Hôpital de la Conception, Service de Biochimie, Marseille, France.
J Clin Lab Anal. 2018 Feb;32(2). doi: 10.1002/jcla.22229. Epub 2017 Apr 11.
Hemolysis, Icterus, and Lipemia constituting the HIL index, are the most common causes of interference with accurate measurement in biochemistry. This study focuses on bilirubin interference, aiming to identify the analyses impacted and proposing a way to predict nominal interference-free analyte concentrations, based on both analyte level and Icterus Index (I ).
Sixteen common analytes were studied: alanine aminotransferase (ALT), albumin (ALB), alkaline phosphatase (ALP), amylase (AMY), aspartate aminotransferase (AST), total cholesterol (CHOLT), creatinine (CREA, enzymatic method), fructosamine (FRUC), gamma-glutamyl transferase (GGT), HDL cholesterol (HDLc), total iron (Iron), lipase (LIP), inorganic phosphorus (Phos), total protein (PROT), triglycerides (TG), and uric acid (UA). Both the traditional 10% change in concentrations from baseline and the Total Change Level (TCL) were taken as acceptance limits. Nineteen pools of sera covering a wide range of values were tested on the Cobas® 6000 (Roche Diagnostics). I ranged from 0 to 60.
Eight analytes increased (FRUC and Phos) or decreased (CHOLT, CREA, HDLc, PROT, TG, and UA) significantly when I increased. FRUC, HDLc, PROT, and UA showed a linear relationship when I increased. A non-linear relationship was found for TG, CREA, and for CHOLT; this also depended on analyte levels. Others were not impacted, even at high I .
A method of estimating an interference-free value for FRUC, HDLc, PROT, Phos, UA, TG, and CREA, and for CHOLT in cases of cholestasis, is proposed. I levels are identified based on analytical performance goals, and equations to recalculate interference-free values are also proposed.
构成HIL指数的溶血、黄疸和脂血是生物化学中干扰准确测量的最常见原因。本研究聚焦于胆红素干扰,旨在确定受影响的分析项目,并基于分析物水平和黄疸指数(I)提出一种预测名义上无干扰的分析物浓度的方法。
研究了16种常见分析物:丙氨酸氨基转移酶(ALT)、白蛋白(ALB)、碱性磷酸酶(ALP)、淀粉酶(AMY)、天冬氨酸氨基转移酶(AST)、总胆固醇(CHOLT)、肌酐(CREA,酶法)、果糖胺(FRUC)、γ-谷氨酰转移酶(GGT)、高密度脂蛋白胆固醇(HDLc)、总铁(铁)、脂肪酶(LIP)、无机磷(Phos)、总蛋白(PROT)、甘油三酯(TG)和尿酸(UA)。传统的与基线浓度相差10%以及总变化水平(TCL)均被用作可接受限度。在Cobas® 6000(罗氏诊断)上对19份涵盖广泛数值范围的血清样本进行了检测。I的范围为0至60。
当I升高时,8种分析物显著升高(FRUC和Phos)或降低(CHOLT、CREA、HDLc、PROT、TG和UA)。当I升高时,FRUC、HDLc、PROT和UA呈现线性关系。发现TG、CREA和CHOLT存在非线性关系;这也取决于分析物水平。其他分析物即使在I值较高时也未受影响。
提出了一种估算FRUC、HDLc、PROT、Phos、UA、TG和CREA以及胆汁淤积情况下CHOLT的无干扰值的方法。根据分析性能目标确定I水平,并提出了重新计算无干扰值的公式。