Rodríguez Ana M, Delpino M Victoria, Miraglia M Cruz, Costa Franco Miriam M, Barrionuevo Paula, Dennis Vida A, Oliveira Sergio C, Giambartolomei Guillermo H
Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil.
Glia. 2017 Jul;65(7):1137-1151. doi: 10.1002/glia.23149. Epub 2017 Apr 11.
Inflammation has long been implicated as a contributor to pathogenesis in neurobrucellosis. Many of the associated neurocognitive symptoms of neurobrucellosis may be the result of neuronal dysfunction resulting from the inflammatory response induced by Brucella abortus infection in the central nervous system. In this manuscript, we describe an immune mechanism for inflammatory activation of microglia that leads to neuronal death upon B. abortus infection. B. abortus was unable to infect or harm primary cultures of mouse neurons. However, when neurons were co-cultured with microglia and infected with B. abortus significant neuronal loss occurred. This phenomenon was dependent on TLR2 activation by Brucella lipoproteins. Neuronal death was not due to apoptosis, but it was dependent on the microglial release of nitric oxide (NO). B. abortus infection stimulated microglial proliferation, phagocytic activity and engulfment of neurons. NO secreted by B. abortus-activated microglia induced neuronal exposure of the "eat-me" signal phosphatidylserine (PS). Blocking of PS-binding to protein milk fat globule epidermal growth factor-8 (MFG-E8) or microglial vitronectin receptor-MFG-E8 interaction was sufficient to prevent neuronal loss by inhibiting microglial phagocytosis without affecting their activation. Taken together, our results indicate that B. abortus is not directly toxic to neurons; rather, these cells become distressed and are killed by phagocytosis in the inflammatory surroundings generated by infected microglia. Neuronal loss induced by B. abortus-activated microglia may explain, in part, the neurological deficits observed during neurobrucellosis.
长期以来,炎症一直被认为是神经型布鲁氏菌病发病机制的一个促成因素。神经型布鲁氏菌病的许多相关神经认知症状可能是由流产布鲁氏菌感染中枢神经系统诱导的炎症反应导致神经元功能障碍的结果。在本论文中,我们描述了一种小胶质细胞炎症激活的免疫机制,该机制在流产布鲁氏菌感染后导致神经元死亡。流产布鲁氏菌无法感染或损害小鼠神经元的原代培养物。然而,当神经元与小胶质细胞共培养并感染流产布鲁氏菌时,会发生显著的神经元损失。这种现象依赖于布鲁氏菌脂蛋白对Toll样受体2(TLR2)的激活。神经元死亡并非由于凋亡,而是依赖于小胶质细胞释放一氧化氮(NO)。流产布鲁氏菌感染刺激了小胶质细胞的增殖、吞噬活性以及对神经元的吞噬。流产布鲁氏菌激活的小胶质细胞分泌的NO诱导神经元暴露“吃我”信号磷脂酰丝氨酸(PS)。阻断PS与蛋白乳脂肪球表皮生长因子8(MFG-E8)的结合或小胶质细胞玻连蛋白受体与MFG-E8的相互作用足以通过抑制小胶质细胞吞噬作用来防止神经元损失,而不影响它们的激活。综上所述,我们的结果表明流产布鲁氏菌对神经元没有直接毒性;相反,这些细胞在被感染的小胶质细胞产生的炎症环境中因吞噬作用而受损并被杀死。流产布鲁氏菌激活的小胶质细胞诱导的神经元损失可能部分解释了神经型布鲁氏菌病期间观察到的神经功能缺损。