Kar Nabanita, Chakraborty Shreyasi, De Asit Kumar, Ghosh Santanu, Bera Tanmoy
Laboratory of Nanomedicine, Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
Laboratory of Nanomedicine, Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
Eur J Pharm Sci. 2017 Jun 15;104:196-211. doi: 10.1016/j.ejps.2017.03.046. Epub 2017 Apr 8.
Leishmaniasis is an epidemic in various countries, and the parasite Leishmania donovani is developing resistance against available drugs. In the present study the antileishmanial action of cedrol was evaluated in vitro and in vivo. Activity potentiation was achieved via nanostructured lipid carrier (NLC) complexation of cedrol. Cedrol-loaded NLC was prepared through the hot-melting emulsification-ultrasonication method. The cedrol- NLC prepared did not require the use of any organic solvents. The characterization of NLC-C and NLC-C revealed that particle size was 46.62nm and 54.73nm for 3.85%, and 7.48% drug loading, respectively and negative charge of -19.2mV and -23.7mV. The cedrol-loaded NLC were found to be spherical with a smooth surface. Drug-carrier interactions were clearly visualized in FT-IR studies. Incorporation of cedrol in NLC was ascertained in DSC and XRD analysis. Antileishmanial activities of free cedrol and cedrol-NLC were performed against L. donovani wild-type, sodium stibogluconate, paromomycin and field isolated resistant strains in axenic amastigotes and amastigotes in macrophage model. Coumarin-6 loaded NLC nanoparticles were assessed for macrophage internalization in confocal microscopic studies. Cedrol showed significant antileishmanial activity in wild-type (IC=1.5μM), sodium stibogluconate resistant (IC=2μM), paromomycin resistant (IC=1.8μM) and field isolated resistant (IC=1.35μM) strains in macrophage together with cytotoxicity (CC=74μM) in mouse peritoneal macrophage cells. Incorporation of cedrol in NLC-C resulted in 2.1-fold and 2-fold increase in selectivity indexes (CC/IC) for wild-type and drug resistant strains, respectively. In addition, in vivo studies revealed that bioactivity of NLC-C were 2.3 to 3.8-fold increased in wild-type and 3 to 4.9-fold increased in drug resistant strains when compared with free cedrol; administered orally in mouse leishmaniasis model. Overall, NLC-C showed superior antileishmanial activity to free cedrol and miltefosine in oral dose. These findings support the use of NLCs for oral delivery of poorly water-soluble antileishmanial drugs in treatment of leishmaniasis.
Cedrol (PubChem CID: 65575); Compritol® 888 ATO (PubChem CID: 62726); Triolein (PubChem CID: 5497163); Pluronic F68 (PubChem CID: 24751); Soya lecithin (PubChem CID: 57369748); Sodium deoxycholate (PubChem CID: 23668196); Miltefosine (PubChem CID: 3599); Paromomycin (PubChem CID: 165580); Amphotericin B (PubChem CID: 5280965); Sodium stibogluconate (PubChem CID: 16683012).
利什曼病在各国流行,杜氏利什曼原虫对现有药物产生了耐药性。在本研究中,对雪松醇的抗利什曼作用进行了体外和体内评估。通过雪松醇的纳米结构脂质载体(NLC)络合实现活性增强。通过热熔乳化-超声法制备了负载雪松醇的NLC。所制备的雪松醇-NLC不需要使用任何有机溶剂。NLC-C和NLC-C的表征显示,载药量为3.85%和7.48%时,粒径分别为46.62nm和54.73nm,表面电荷为-19.2mV和-23.7mV。负载雪松醇的NLC呈球形,表面光滑。在傅里叶变换红外光谱(FT-IR)研究中可清晰观察到药物-载体相互作用。在差示扫描量热法(DSC)和X射线衍射(XRD)分析中确定了雪松醇在NLC中的掺入情况。在无细胞无鞭毛体和巨噬细胞模型中的无鞭毛体中,对游离雪松醇和雪松醇-NLC针对杜氏利什曼原虫野生型、葡萄糖酸锑钠、巴龙霉素和现场分离的耐药菌株进行了抗利什曼活性研究。在共聚焦显微镜研究中评估了负载香豆素-6的NLC纳米颗粒的巨噬细胞内化情况。雪松醇在巨噬细胞中的野生型(IC=1.5μM)、葡萄糖酸锑钠耐药型(IC=2μM)、巴龙霉素耐药型(IC=1.8μM)和现场分离耐药型(IC=1.35μM)菌株中显示出显著的抗利什曼活性,同时在小鼠腹腔巨噬细胞中具有细胞毒性(CC=74μM)。将雪松醇掺入NLC-C中,野生型和耐药菌株的选择性指数(CC/IC)分别提高了2.1倍和2倍。此外,体内研究表明,在小鼠利什曼病模型中口服给药时,与游离雪松醇相比,NLC-C的生物活性在野生型中提高了2.3至3.8倍,在耐药菌株中提高了3至4.9倍。总体而言,在口服剂量下,NLC-C显示出比游离雪松醇和米替福新更强的抗利什曼活性。这些发现支持使用NLC口服递送水溶性差的抗利什曼药物来治疗利什曼病。
雪松醇(PubChem CID:65575);Compritol® 888 ATO(PubChem CID:62726);三油酸甘油酯(PubChem CID:5497163);普朗尼克F68(PubChem CID:24751);大豆卵磷脂(PubChem CID:57369748);脱氧胆酸钠(PubChem CID:23668196);米替福新(PubChem CID:3599);巴龙霉素(PubChem CID:165580);两性霉素B(PubChem CID:5280965);葡萄糖酸锑钠(PubChem CID:16683012)。