Zhang Xiaojie, Lu Chenyang, Bai Linquan
State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China.
Appl Microbiol Biotechnol. 2017 Jun;101(11):4635-4644. doi: 10.1007/s00253-017-8278-5. Epub 2017 Apr 11.
The anticoccidial salinomycin is a polyketide produced by Streptomyces albus, and the high-yield strain BK 3-25 produces 18.0 g/L salinomycin under lab condition. In order to elucidate the overproduction mechanism, the genome of BK 3-25 was fully sequenced and compared with the wild-type DSM 41398. Strain BK 3-25 has a 75-kb large deletion, containing type-I polyketide gene cluster PKS-9, and 60 additional InDels and SNVs affecting 55 CDSs, including a 1-bp deletion in type-I PKS gene cluster PKS-6. Subsequently, individual or combined deletions of the 75-kb region and PKS-6 in the wild-type resulted in improved salinomycin yields from 2.60 to 5.20, 6.90, and 9.50 g/L (53% of BK 3-25), respectively, suggesting a redirected flux of polyketide precursors to salinomycin biosynthesis. Moreover, due to the much higher transcription of salinomycin biosynthetic genes (sln) in the high-yield BK 3-25 than in the wild-type, 13 putative regulatory genes among the 55 CDSs were individually inactivated and 7 were proved to be negatively involved in the transcription of sln genes. Combined deletions of two major negative regulatory genes SLNWT_3357 and SLNWT_7015 caused further improved transcription of sln genes as well as the yield, from 2.60 to 7.30 g/L (40% of BK 3-25). Therefore, the comparative genomics approach combined with functional experiments identified that the multiple deletions and mutations of competing gene clusters and negative regulatory genes are crucial for salinomycin overproduction, setting an example for rational titer improvement of other polyketide natural products.
抗球虫药盐霉素是由白色链霉菌产生的一种聚酮化合物,高产菌株BK 3-25在实验室条件下可产生18.0 g/L的盐霉素。为了阐明其高产机制,对BK 3-25的基因组进行了全测序,并与野生型DSM 41398进行了比较。菌株BK 3-25有一个75 kb的大片段缺失,包含I型聚酮基因簇PKS-9,还有另外60个影响55个编码序列(CDS)的插入缺失和单核苷酸变异,包括I型聚酮合酶基因簇PKS-6中的一个1 bp缺失。随后,在野生型中单独或联合缺失75 kb区域和PKS-6,使盐霉素产量分别从2.60 g/L提高到5.20、6.90和9.50 g/L(BK 3-25产量的53%),这表明聚酮前体重新导向了盐霉素的生物合成。此外,由于高产菌株BK 3-25中盐霉素生物合成基因(sln)的转录水平远高于野生型,因此对55个CDS中的13个假定调控基因进行了单独失活,其中7个被证明对sln基因的转录有负调控作用。两个主要负调控基因SLNWT_3357和SLNWT_7015的联合缺失导致sln基因的转录以及产量进一步提高,从2.60 g/L提高到7.30 g/L(BK 3-25产量的40%)。因此,比较基因组学方法结合功能实验表明,竞争基因簇和负调控基因的多重缺失和突变对盐霉素的高产至关重要,为其他聚酮类天然产物的合理提高效价树立了榜样。