Suppr超能文献

极端嗜盐古菌阿根廷嗜盐嗜碱菌RR10对clinorotation模拟微重力的响应

Response of extreme haloarchaeon Haloarcula argentinensis RR10 to simulated microgravity in clinorotation.

作者信息

Thombre Rebecca, Shinde Vinaya, Dixit Jyotsana, Jagtap Sagar, Vidyasagar Pandit B

机构信息

Department of Biotechnology, Modern College of Arts, Science and Commerce, Shivajinagar, Pune, Maharashtra, 411005, India.

School of Basic Medical Sciences, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.

出版信息

3 Biotech. 2017 May;7(1):30. doi: 10.1007/s13205-016-0596-2. Epub 2017 Apr 11.

Abstract

Gravity is the fundamental force that may have operated during the evolution of life on Earth. It is thus important to understand as to what the effects of gravity are on cellular life. The studies related to effect of microgravity on cells may provide greater insights in understanding of how the physical force of gravity shaped life on Earth. The present study focuses on a unique group of organisms called the Haloarchaea, which are known for their extreme resistance to survive in stress-induced environments. The aim of the present investigation was to study the effect of simulated microgravity on physiological response of extremely halophilic archaeon, Haloarcula argentinensis RR10, under slow clinorotation. The growth kinetics of the archaeon in microgravity was studied using the Baryani model and the viable and apoptotic cells were assessed using propidium iodide fluorescent microscopic studies. The physiological mechanism of adaptation was activation of 'salt-in' strategy by intracellular sequestration of sodium ions as detected by EDAX. The organism upregulated the production of ribosomal proteins in simulated microgravity as evidenced by Matrix-assisted laser desorption ionization Time of flight-Mass Spectrophotometry. Simulated microgravity altered the antibiotic susceptibility of the haloarchaeon and it developed resistance to Augmentin, Norfloxacin, Tobramycin and Cefoperazone, rendering it a multidrug resistant strain. The presence of antibiotic efflux pump was detected in the haloarchaeon and it also enhanced production of protective carotenoid pigment in simulated microgravity. The present study is presumably the first report of physiological response of H. argentinensis RR10 in microgravity simulated under slow clinorotation.

摘要

重力是在地球生命进化过程中可能发挥作用的基本力。因此,了解重力对细胞生命的影响非常重要。与微重力对细胞影响相关的研究可能会为理解重力这一物理力如何塑造地球上的生命提供更深入的见解。本研究聚焦于一类独特的生物体——嗜盐古菌,它们以在应激诱导环境中具有极强的生存抗性而闻名。本研究的目的是在慢速 clinorotation 条件下,研究模拟微重力对极端嗜盐古菌阿根廷嗜盐嗜碱杆菌 RR10 生理反应的影响。使用 Baryani 模型研究了古菌在微重力下的生长动力学,并通过碘化丙啶荧光显微镜研究评估了活细胞和凋亡细胞。通过能谱分析检测到,适应的生理机制是通过细胞内隔离钠离子来激活“盐入”策略。基质辅助激光解吸电离飞行时间质谱分析表明,该生物体在模拟微重力下上调了核糖体蛋白的产生。模拟微重力改变了嗜盐古菌的抗生素敏感性,使其对阿莫西林、诺氟沙星、妥布霉素和头孢哌酮产生抗性,成为多药耐药菌株。在嗜盐古菌中检测到抗生素外排泵的存在,并且在模拟微重力下它还增强了保护性类胡萝卜素色素的产生。本研究大概是关于在慢速 clinorotation 条件下模拟微重力下阿根廷嗜盐嗜碱杆菌 RR10 生理反应的首篇报道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c9/5388653/498fae3de01a/13205_2016_596_Fig2_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验