Gray Victor, Dreos Ambra, Erhart Paul, Albinsson Bo, Moth-Poulsen Kasper, Abrahamsson Maria
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
Phys Chem Chem Phys. 2017 May 3;19(17):10931-10939. doi: 10.1039/c7cp01368j.
Triplet-triplet annihilation photon upconversion (TTA-UC) can, through a number of energy transfer processes, efficiently combine two low frequency photons into one photon of higher frequency. TTA-UC systems consist of one absorbing species (the sensitizer) and one emitting species (the annihilator). Herein, we show that the structurally similar annihilators, 9,10-diphenylanthracene (DPA, 1), 9-(4-phenylethynyl)-10-phenylanthracene (2) and 9,10-bis(phenylethynyl)anthracene (BPEA, 3) have very different upconversion efficiencies, 15.2 ± 2.8%, 15.9 ± 1.3% and 1.6 ± 0.8%, respectively (of a maximum of 50%). We show that these results can be understood in terms of a loss channel, previously unaccounted for, originating from the difference between the BPEA singlet and triplet surface shapes. The difference between the two surfaces results in a fraction of the triplet state population having geometries not energetically capable of forming the first singlet excited state. This is supported by TD-DFT calculations of the annihilator excited state surfaces as a function of phenyl group rotation. We thereby highlight that the commonly used "spin-statistical factor" should be used with caution when explaining TTA-efficiencies. Furthermore, we show that the precious metal free zinc octaethylporphyrin (ZnOEP) can be used for efficient sensitization and that the upconversion quantum yield is maximized when sensitizer-annihilator spectral overlap is minimized (ZnOEP with 2).
三重态-三重态湮灭光子上转换(TTA-UC)可以通过一系列能量转移过程,将两个低频光子有效地合并为一个高频光子。TTA-UC系统由一种吸收物种(敏化剂)和一种发射物种(湮灭剂)组成。在此,我们表明结构相似的湮灭剂9,10-二苯基蒽(DPA,1)、9-(4-苯乙炔基)-10-苯基蒽(2)和9,10-双(苯乙炔基)蒽(BPEA,3)具有非常不同的上转换效率,分别为15.2±2.8%、15.9±1.3%和1.6±0.8%(最大值为50%)。我们表明,这些结果可以从一个先前未考虑的损失通道来理解,该通道源于BPEA单重态和三重态表面形状的差异。两个表面之间的差异导致一部分三重态布居具有在能量上无法形成第一单重激发态的几何结构。这得到了作为苯基旋转函数的湮灭剂激发态表面的TD-DFT计算的支持。因此,我们强调在解释TTA效率时应谨慎使用常用的“自旋统计因子”。此外,我们表明无贵金属的八乙基锌卟啉(ZnOEP)可用于高效敏化,并且当敏化剂-湮灭剂光谱重叠最小时上转换量子产率最大化(ZnOEP与2)。