Dittmer Philip J, Wild Angela R, Dell'Acqua Mark L, Sather William A
Department of Pharmacology, University of Colorado School of Medicine, 12800 East 19(th) Avenue, Aurora, CO 80045, USA.
Department of Pharmacology, University of Colorado School of Medicine, 12800 East 19(th) Avenue, Aurora, CO 80045, USA.
Cell Rep. 2017 Apr 11;19(2):321-334. doi: 10.1016/j.celrep.2017.03.056.
Potentiation of synaptic strength relies on postsynaptic Ca signals, modification of dendritic spine structure, and changes in gene expression. One Ca signaling pathway supporting these processes routes through L-type Ca channels (LTCC), whose activity is subject to tuning by multiple mechanisms. Here, we show in hippocampal neurons that LTCC inhibition by the endoplasmic reticulum (ER) Ca sensor, stromal interaction molecule 1 (STIM1), is engaged by the neurotransmitter glutamate, resulting in regulation of spine ER structure and nuclear signaling by the NFATc3 transcription factor. In this mechanism, depolarization by glutamate activates LTCC Ca influx, releases Ca from the ER, and consequently drives STIM1 aggregation and an inhibitory interaction with LTCCs that increases spine ER content but decreases NFATc3 nuclear translocation. These findings of negative feedback control of LTCC signaling by STIM1 reveal interplay between Ca influx and release from stores that controls both postsynaptic structural plasticity and downstream nuclear signaling.
突触强度的增强依赖于突触后钙信号、树突棘结构的改变以及基因表达的变化。支持这些过程的一条钙信号通路通过L型钙通道(LTCC),其活性受到多种机制的调节。在这里,我们在海马神经元中发现,内质网(ER)钙传感器基质相互作用分子1(STIM1)对LTCC的抑制作用是由神经递质谷氨酸介导的,导致NFATc3转录因子对棘突内质网结构和核信号传导的调节。在这一机制中,谷氨酸引起的去极化激活LTCC钙内流,从内质网释放钙,从而驱动STIM1聚集以及与LTCC的抑制性相互作用,这增加了棘突内质网含量,但减少了NFATc3的核转位。STIM1对LTCC信号进行负反馈控制的这些发现揭示了钙内流与内质网钙释放之间的相互作用,这种相互作用控制着突触后结构可塑性和下游核信号传导。