树突干中受差异调节钙信号区域赋予的突触串扰毗邻增强棘突。
Synaptic crosstalk conferred by a zone of differentially regulated Ca signaling in the dendritic shaft adjoining a potentiated spine.
机构信息
Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045.
Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
出版信息
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13611-13620. doi: 10.1073/pnas.1902461116. Epub 2019 Jun 17.
Patterns of postsynaptic activity that induce long-term potentiation of fast excitatory transmission at glutamatergic synapses between hippocampal neurons cause enlargement of the dendritic spine and promote growth in spine endoplasmic reticulum (ER) content. Such postsynaptic activity patterns also impact Ca signaling in the adjoining dendritic shaft, in a zone centered on the spine-shaft junction and extending ∼10-20 µm in either direction along the shaft. Comparing this specialized zone in the shaft with the dendrite in general, plasticity-inducing stimulation of a single spine causes more profound depletion of Ca stores in the ER, a greater degree of interaction between stromal interaction molecule 1 (STIM1) and L-type Ca channels, and thus stronger STIM1 inhibition of these channels. Here we show that the length of this zone along the dendritic axis can be approximately doubled through the neuromodulatory action of β-adrenergic receptors (βARs). The mechanism of βAR enlargement of the zone arises from protein kinase A-mediated enhancement of L-type Ca current, which in turn lowers [Ca] through ryanodine receptor-dependent Ca-induced Ca release and activates STIM1 feedback inhibition of L-type Ca channels. An important function of this dendritic zone is to support crosstalk between spines along its length such that spines neighboring a strongly stimulated spine are enabled to undergo structural plasticity in response to stimulation that would otherwise be subthreshold for spine structural plasticity. This form of crosstalk requires L-type Ca channel current to activate STIM1, and βAR activity extends the range along the shaft over which such spine-to-spine communication can occur.
在海马神经元之间的谷氨酸能突触上,诱导快速兴奋性传递的长时程增强的突触后活动模式会导致树突棘的增大,并促进树突内质网(ER)含量的增加。这种突触后活动模式也会影响毗邻树突干的 Ca 信号转导,在以棘突-干交界处为中心的区域,沿着干向两侧各延伸约 10-20 µm。将这个特殊的干区与一般的树突进行比较,单个棘突的可塑性诱导刺激会导致 ER 中 Ca 储存的更深度耗竭,基质相互作用分子 1(STIM1)和 L 型 Ca 通道之间的相互作用程度更大,从而更强地抑制这些通道。在这里,我们表明通过β-肾上腺素能受体(βAR)的神经调节作用,可以将这个沿着树突轴的区域长度大致增加一倍。βAR 扩大该区域的机制源于蛋白激酶 A 介导的 L 型 Ca 电流增强,这反过来又通过ryanodine 受体依赖性 Ca 诱导的 Ca 释放降低 [Ca],并激活 STIM1 对 L 型 Ca 通道的反馈抑制。这个树突区域的一个重要功能是支持其长度上的棘突之间的串扰,使得邻近强烈刺激棘突的棘突能够对刺激做出结构可塑性反应,否则这种刺激对于棘突结构可塑性来说是亚阈值的。这种串扰形式需要 L 型 Ca 通道电流来激活 STIM1,而 βAR 活性会扩展沿干发生这种棘突间通讯的范围。