Suppr超能文献

L 型钙通道激活 STIM1-Orai1 信号重塑树突棘内质网以维持长期结构可塑性。

L-type Ca channel activation of STIM1-Orai1 signaling remodels the dendritic spine ER to maintain long-term structural plasticity.

机构信息

Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2407324121. doi: 10.1073/pnas.2407324121. Epub 2024 Aug 23.

Abstract

Learning and memory require coordinated structural and functional plasticity at neuronal glutamatergic synapses located on dendritic spines. Here, we investigated how the endoplasmic reticulum (ER) controls postsynaptic Ca signaling and long-term potentiation of dendritic spine size, i.e., sLTP that accompanies functional strengthening of glutamatergic synaptic transmission. In most ER-containing (ER+) spines, high-frequency optical glutamate uncaging (HFGU) induced long-lasting sLTP that was accompanied by a persistent increase in spine ER content downstream of a signaling cascade engaged by N-methyl-D-aspartate receptors (NMDARs), L-type Ca channels (LTCCs), and Orai1 channels, the latter being activated by stromal interaction molecule 1 (STIM1) in response to ER Ca release. In contrast, HFGU stimulation of ER-lacking (ER-) spines expressed only transient sLTP and exhibited weaker Ca signals noticeably lacking Orai1 and ER contributions. Consistent with spine ER regulating structural metaplasticity, delivery of a second stimulus to ER- spines induced ER recruitment along with persistent sLTP, whereas ER+ spines showed no additional increases in size or ER content in response to sequential stimulation. Surprisingly, the physical interaction between STIM1 and Orai1 induced by ER Ca release, but not the resulting Ca entry through Orai1 channels, proved necessary for the persistent increases in both spine size and ER content required for expression of long-lasting late sLTP.

摘要

学习和记忆需要位于树突棘上的神经元谷氨酸能突触的结构和功能的协调可塑性。在这里,我们研究了内质网(ER)如何控制突触后 Ca 信号和树突棘大小的长时程增强,即伴随着谷氨酸能突触传递功能增强的 sLTP。在大多数包含内质网(ER+)的棘突中,高频光谷氨酸猝灭(HFGU)诱导持久的 sLTP,伴随着由 N-甲基-D-天冬氨酸受体(NMDARs)、L 型钙通道(LTCCs)和 Orai1 通道参与的信号级联反应下游的棘突内质网含量的持续增加,后者由基质相互作用分子 1(STIM1)激活以响应 ER Ca 释放。相比之下,缺乏内质网(ER-)的棘突表达的 HFGU 刺激仅诱导短暂的 sLTP,并且显示出较弱的 Ca 信号,明显缺乏 Orai1 和 ER 的贡献。与棘突 ER 调节结构的后生变化一致,向 ER-棘突输送第二个刺激会诱导 ER 募集以及持久的 sLTP,而 ER+棘突在连续刺激下不会显示出大小或 ER 含量的额外增加。令人惊讶的是,由 ER Ca 释放诱导的 STIM1 和 Orai1 之间的物理相互作用,而不是通过 Orai1 通道的随后 Ca 内流,对于持久增加大小和 ER 含量所需的持久晚期 sLTP 的表达是必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a70/11363309/0d661c478002/pnas.2407324121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验