Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America.
PLoS One. 2017 Apr 12;12(4):e0175069. doi: 10.1371/journal.pone.0175069. eCollection 2017.
Glucose-stimulated insulin secretion (GSIS) relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P) channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s) that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH) assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN). Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm) in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased β-cell TALK-1 K+ currents. The TALK-1/iOPN complex caused Vm hyperpolarization and reduced β-cell glucose-stimulated Ca2+ influx, which is predicted to inhibit GSIS.
葡萄糖刺激的胰岛素分泌 (GSIS) 依赖于 β 细胞 Ca2+内流,而 Ca2+内流受双孔域钾 (K2P) 通道 TALK-1 调节。编码 TALK-1 的 KCNK16 基因的功能获得性多态性增加了患 2 型糖尿病的风险。虽然 TALK-1 在调节 GSIS 中起重要作用,但控制 β 细胞 TALK-1 通道的调节机制尚不清楚。因此,我们采用膜特异性酵母双杂交 (MYTH) 测定法鉴定人胰岛中的 TALK-1 相互作用蛋白,这将有助于确定调节 TALK-1 功能的信号转导方式。从人胰岛 cDNA 文库中鉴定出 21 种与 TALK-1 相互作用的蛋白。其中一些相互作用增加了 TALK-1 的活性,包括细胞内骨桥蛋白 (iOPN)。细胞内 OPN 在 β 细胞中高度表达,并在糖尿病前期条件下上调,以帮助维持正常的 β 细胞功能;然而,iOPN 在 β 细胞中的功能作用知之甚少。我们发现 iOPN 在胰腺切片中与 TALK-1 共定位,并与人胰岛 TALK-1 通道共免疫沉淀。由于人 β 细胞表达两种 TALK-1 形成钾通道的变体,因此评估了 iOPN 对这些 TALK-1 变体的调节作用。在生理电压下,iOPN 激活 TALK-1 转录变体 3 通道,但不激活 TALK-1 转录变体 2 通道。iOPN 激活 TALK-1 通道也使 HEK293 细胞和原代小鼠 β 细胞中的静息膜电位 (Vm) 超极化。还在 β 细胞中敲低细胞内 OPN,以测试其对 β 细胞 TALK-1 通道活性的影响。减少 β 细胞内 iOPN 显著降低 TALK-1 钾电流并增加葡萄糖刺激的 Ca2+内流。重要的是,iOPN 不影响其他 K2P 通道的功能,也不改变 TALK-1 缺陷型 β 细胞中的 Ca2+内流。这些结果揭示了与 TALK-1 通道的第一个蛋白相互作用,并发现与 iOPN 的相互作用增加了 β 细胞 TALK-1 K+电流。TALK-1/iOPN 复合物引起 Vm 超极化并减少 β 细胞葡萄糖刺激的 Ca2+内流,这预计会抑制 GSIS。