Han Haoxue, Mérabia Samy, Müller-Plathe Florian
Theoretische Physikalische Chemie, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt , Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.
Institut Lumière Matière UMR 5306 CNRS Université Claude Bernard Lyon 1, Bâtiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, France.
J Phys Chem Lett. 2017 May 4;8(9):1946-1951. doi: 10.1021/acs.jpclett.7b00227. Epub 2017 Apr 17.
The integration of three-dimensional microelectronics is hampered by overheating issues inherent to state-of-the-art integrated circuits. Fundamental understanding of heat transfer across soft-solid interfaces is important for developing efficient heat dissipation capabilities. At the microscopic scale, the formation of a dense liquid layer at the solid-liquid interface decreases the interfacial heat resistance. We show through molecular dynamics simulations of n-perfluorohexane on a generic wettable surface that enhancement of the liquid structure beyond a single adsorbed layer drastically enhances interfacial heat conductance. Pressure is used to control the extent of the liquid layer structure. The interfacial thermal conductance increases with pressure values up to 16.2 MPa at room temperature. Furthermore, it is shown that liquid structuring enhances the heat-transfer rate of high-energy lattice waves by broadening the transmission peaks in the heat flux spectrum. Our results show that pressure is an important external parameter that may be used to control interfacial heat conductance at solid-soft interfaces.
三维微电子学的集成受到最先进集成电路固有的过热问题的阻碍。深入了解软固体界面间的热传递对于开发高效散热能力至关重要。在微观尺度上,固液界面处致密液层的形成会降低界面热阻。我们通过对全氟己烷在普通可湿表面上的分子动力学模拟表明,液体结构超出单个吸附层的增强会极大地提高界面热导率。压力用于控制液层结构的程度。在室温下,界面热导率随压力值增加,直至16.2兆帕。此外,研究表明,液体结构化通过拓宽热流谱中的传输峰来提高高能晶格波的传热速率。我们的结果表明,压力是一个重要的外部参数,可用于控制固软界面处的界面热导率。