Suppr超能文献

解构流体界面上的温度梯度:液-气界面热阻的结构起源。

Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces.

作者信息

Muscatello Jordan, Chacón Enrique, Tarazona Pedro, Bresme Fernando

机构信息

Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom.

Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, E-28049 Madrid, Spain.

出版信息

Phys Rev Lett. 2017 Jul 28;119(4):045901. doi: 10.1103/PhysRevLett.119.045901. Epub 2017 Jul 25.

Abstract

The interfacial thermal resistance determines condensation-evaporation processes and thermal transport across material-fluid interfaces. Despite its importance in transport processes, the interfacial structure responsible for the thermal resistance is still unknown. By combining nonequilibrium molecular dynamics simulations and interfacial analyses that remove the interfacial thermal fluctuations we show that the thermal resistance of liquid-vapor interfaces is connected to a low density fluid layer that is adsorbed at the liquid surface. This thermal resistance layer (TRL) defines the boundary where the thermal transport mechanism changes from that of gases (ballistic) to that characteristic of dense liquids, dominated by frequent particle collisions involving very short mean free paths. We show that the thermal conductance is proportional to the number of atoms adsorbed in the TRL, and hence we explain the structural origin of the thermal resistance in liquid-vapor interfaces.

摘要

界面热阻决定了冷凝 - 蒸发过程以及跨材料 - 流体界面的热传输。尽管其在传输过程中很重要,但导致热阻的界面结构仍然未知。通过结合非平衡分子动力学模拟和消除界面热涨落的界面分析,我们表明液 - 气界面的热阻与吸附在液体表面的低密度流体层有关。这个热阻层(TRL)定义了热传输机制从气体(弹道式)转变为密集液体特征(以涉及非常短平均自由程的频繁粒子碰撞为主)的边界。我们表明热导率与吸附在TRL中的原子数成正比,因此我们解释了液 - 气界面热阻的结构起源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验