Suppr超能文献

通过使用信息技术在大型活动期间实现交通的集体效益。

Collective benefits in traffic during mega events via the use of information technologies.

作者信息

Xu Yanyan, González Marta C

机构信息

Department of Civil and Environmental Engineering, MIT, Cambridge, MA 02139, USA.

Department of Civil and Environmental Engineering, MIT, Cambridge, MA 02139, USA

出版信息

J R Soc Interface. 2017 Apr;14(129). doi: 10.1098/rsif.2016.1041.

Abstract

Information technologies today can inform each of us about the route with the shortest time, but they do not contain incentives to manage travellers such that we all get collective benefits in travel times. To that end we need travel demand estimates and target strategies to reduce the traffic volume from the congested roads during peak hours in a feasible way. During large events, the traffic inconveniences in large cities are unusually high, yet temporary, and the entire population may be more willing to adopt collective recommendations for collective benefits in traffic. In this paper, we integrate, for the first time, big data resources to estimate the impact of events on traffic and propose target strategies for collective good at the urban scale. In the context of the Olympic Games in Rio de Janeiro, we first predict the expected increase in traffic. To that end, we integrate data from mobile phones, Airbnb, Waze and transit information, with game schedules and expected attendance in each venue. Next, we evaluate different route choice scenarios for drivers during the peak hours. Finally, we gather information on the trips that contribute the most to the global congestion which could be redirected from vehicles to transit. Interestingly, we show that (i) following new route alternatives during the event with individual shortest times can save more collective travel time than keeping the routine routes used before the event, uncovering the positive value of information technologies during events; (ii) with only a small proportion of people selected from specific areas switching from driving to public transport, the collective travel time can be reduced to a great extent. Results are presented online for evaluation by the public and policymakers (www.flows-rio2016.com (last accessed 3 September 2017)).

摘要

如今的信息技术能为我们每个人提供耗时最短的路线信息,但却没有激励措施来引导出行者,以使我们在出行时间上获得集体利益。为此,我们需要出行需求预估和目标策略,以可行的方式减少高峰时段拥堵道路上的交通流量。在大型活动期间,大城市的交通不便会异常严重,但只是临时性的,而且全体民众可能更愿意为了交通方面的集体利益而采纳集体建议。在本文中,我们首次整合大数据资源来评估活动对交通的影响,并提出城市层面实现集体利益的目标策略。以里约热内卢奥运会为例,我们首先预测交通流量的预期增长。为此,我们整合了来自手机、爱彼迎(Airbnb)、瓦兹(Waze)和公交信息的数据,以及比赛日程和每个场馆的预期上座人数。接下来,我们评估了高峰时段司机的不同路线选择方案。最后,我们收集了对全球拥堵贡献最大的出行信息,这些出行可以从机动车转移至公共交通。有趣的是,我们发现:(i)在活动期间选择个人用时最短的新路线方案比沿用活动前的常规路线能节省更多的集体出行时间,这揭示了活动期间信息技术的积极价值;(ii)仅让特定区域的一小部分人从驾车改为乘坐公共交通,就能大幅减少集体出行时间。研究结果已在网上公布,供公众和政策制定者评估(www.flows-rio2016.com(最后访问时间为2017年9月3日))。

相似文献

2
Understanding congested travel in urban areas.了解城市地区的拥堵交通。
Nat Commun. 2016 Mar 15;7:10793. doi: 10.1038/ncomms10793.
3
Collectively optimal routing for congested traffic limited by link capacity.受链路容量限制的拥塞交通的集体最优路由
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 2):066116. doi: 10.1103/PhysRevE.80.066116. Epub 2009 Dec 17.
5
Characterizing multicity urban traffic conditions using crowdsourced data.利用众包数据刻画多城市城市交通状况。
PLoS One. 2019 Mar 12;14(3):e0212845. doi: 10.1371/journal.pone.0212845. eCollection 2019.
7
Characterisation of an urban bus network for environmental purposes.用于环境目的的城市公交网络特性分析
Sci Total Environ. 2004 Dec 1;334-335:85-99. doi: 10.1016/j.scitotenv.2004.04.071.
10
Modeling adaptive reversible lanes: A cellular automata approach.建模自适应可逆车道:元胞自动机方法。
PLoS One. 2021 Jan 4;16(1):e0244326. doi: 10.1371/journal.pone.0244326. eCollection 2021.

本文引用的文献

2
Understanding congested travel in urban areas.了解城市地区的拥堵交通。
Nat Commun. 2016 Mar 15;7:10793. doi: 10.1038/ncomms10793.
3
Understanding individual routing behaviour.了解个体的路由行为。
J R Soc Interface. 2016 Mar;13(116). doi: 10.1098/rsif.2016.0021.
4
Universal resilience patterns in complex networks.复杂网络中的普遍恢复模式。
Nature. 2016 Feb 18;530(7590):307-12. doi: 10.1038/nature16948.
5
Breakdown of interdependent directed networks.相互依存的有向网络的分解
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1138-43. doi: 10.1073/pnas.1523412113. Epub 2016 Jan 19.
7
Understanding road usage patterns in urban areas.了解城市地区的道路使用模式。
Sci Rep. 2012;2:1001. doi: 10.1038/srep01001. Epub 2012 Dec 20.
9
A visual backchannel for large-scale events.用于大型活动的视觉辅助反馈工具。
IEEE Trans Vis Comput Graph. 2010 Nov-Dec;16(6):1129-38. doi: 10.1109/TVCG.2010.129.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验