Macia Javier, Vidiella Blai, Solé Ricard V
ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain.
Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta, 37, 08003 Barcelona, Spain.
J R Soc Interface. 2017 Apr;14(129). doi: 10.1098/rsif.2017.0158.
Associative learning (AL) is one of the key mechanisms displayed by living organisms in order to adapt to their changing environments. It was recognized early as a general trait of complex multicellular organisms but is also found in 'simpler' ones. It has also been explored within synthetic biology using molecular circuits that are directly inspired in neural network models of conditioning. These designs involve complex wiring diagrams to be implemented within one single cell, and the presence of diverse molecular wires become a challenge that might be very difficult to overcome. Here we present three alternative circuit designs based on two-cell microbial consortia able to properly display AL responses to two classes of stimuli and displaying long- and short-term memory (i.e. the association can be lost with time). These designs might be a helpful approach for engineering the human gut microbiome or even synthetic organoids, defining a new class of decision-making biological circuits capable of memory and adaptation to changing conditions. The potential implications and extensions are outlined.
联想学习(AL)是生物体为适应不断变化的环境而展现出的关键机制之一。它很早就被视为复杂多细胞生物的一种普遍特征,但在“较简单”的生物体中也能发现。在合成生物学领域,人们也利用直接受条件作用神经网络模型启发的分子回路对其进行了探索。这些设计涉及要在单个细胞内实现的复杂布线图,并且各种分子线路的存在成为了一个可能极难克服的挑战。在此,我们展示了基于双细胞微生物群落的三种替代电路设计,它们能够对两类刺激正确展现联想学习反应,并表现出长期和短期记忆(即这种关联可能会随时间消失)。这些设计可能是工程化人类肠道微生物群甚至合成类器官的一种有用方法,定义了一类能够记忆并适应变化条件的新型决策生物电路。文中概述了其潜在影响和扩展内容。