Suppr超能文献

工程化多细胞聚集体中的合成关联学习

Synthetic associative learning in engineered multicellular consortia.

作者信息

Macia Javier, Vidiella Blai, Solé Ricard V

机构信息

ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain.

Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta, 37, 08003 Barcelona, Spain.

出版信息

J R Soc Interface. 2017 Apr;14(129). doi: 10.1098/rsif.2017.0158.

Abstract

Associative learning (AL) is one of the key mechanisms displayed by living organisms in order to adapt to their changing environments. It was recognized early as a general trait of complex multicellular organisms but is also found in 'simpler' ones. It has also been explored within synthetic biology using molecular circuits that are directly inspired in neural network models of conditioning. These designs involve complex wiring diagrams to be implemented within one single cell, and the presence of diverse molecular wires become a challenge that might be very difficult to overcome. Here we present three alternative circuit designs based on two-cell microbial consortia able to properly display AL responses to two classes of stimuli and displaying long- and short-term memory (i.e. the association can be lost with time). These designs might be a helpful approach for engineering the human gut microbiome or even synthetic organoids, defining a new class of decision-making biological circuits capable of memory and adaptation to changing conditions. The potential implications and extensions are outlined.

摘要

联想学习(AL)是生物体为适应不断变化的环境而展现出的关键机制之一。它很早就被视为复杂多细胞生物的一种普遍特征,但在“较简单”的生物体中也能发现。在合成生物学领域,人们也利用直接受条件作用神经网络模型启发的分子回路对其进行了探索。这些设计涉及要在单个细胞内实现的复杂布线图,并且各种分子线路的存在成为了一个可能极难克服的挑战。在此,我们展示了基于双细胞微生物群落的三种替代电路设计,它们能够对两类刺激正确展现联想学习反应,并表现出长期和短期记忆(即这种关联可能会随时间消失)。这些设计可能是工程化人类肠道微生物群甚至合成类器官的一种有用方法,定义了一类能够记忆并适应变化条件的新型决策生物电路。文中概述了其潜在影响和扩展内容。

相似文献

2
A Synthetic Multicellular Memory Device.一种合成多细胞记忆装置。
ACS Synth Biol. 2016 Aug 19;5(8):862-73. doi: 10.1021/acssynbio.5b00252. Epub 2016 Aug 8.
4
How to make a synthetic multicellular computer.如何制造一台合成多细胞计算机。
PLoS One. 2014 Feb 19;9(2):e81248. doi: 10.1371/journal.pone.0081248. eCollection 2014.
7
Towards Engineering Biological Systems in a Broader Context.面向更广泛背景下的工程生物系统。
J Mol Biol. 2016 Feb 27;428(5 Pt B):928-44. doi: 10.1016/j.jmb.2015.10.025. Epub 2015 Nov 3.

引用本文的文献

2
Open problems in synthetic multicellularity.合成多细胞性中的开放性问题。
NPJ Syst Biol Appl. 2024 Dec 31;10(1):151. doi: 10.1038/s41540-024-00477-8.
8
Programming Molecular Systems To Emulate a Learning Spiking Neuron.编程分子系统以模拟学习型尖峰神经元。
ACS Synth Biol. 2022 Jun 17;11(6):2055-2069. doi: 10.1021/acssynbio.1c00625. Epub 2022 May 27.
10
Synthetic living machines: A new window on life.合成生命机器:探索生命的新窗口。
iScience. 2021 May 4;24(5):102505. doi: 10.1016/j.isci.2021.102505. eCollection 2021 May 21.

本文引用的文献

1
Synthetic transitions: towards a new synthesis.合成转变:迈向新的合成方法。
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701). doi: 10.1098/rstb.2015.0438.
3
Synthetic collective intelligence.合成集体智能
Biosystems. 2016 Oct;148:47-61. doi: 10.1016/j.biosystems.2016.01.002. Epub 2016 Feb 8.
6
Synthetic circuit designs for earth terraformation.用于地球改造的合成电路设计。
Biol Direct. 2015 Jul 18;10:37. doi: 10.1186/s13062-015-0064-7.
8
Gut microbes and the brain: paradigm shift in neuroscience.肠道微生物与大脑:神经科学的范式转变
J Neurosci. 2014 Nov 12;34(46):15490-6. doi: 10.1523/JNEUROSCI.3299-14.2014.
10
How to make a synthetic multicellular computer.如何制造一台合成多细胞计算机。
PLoS One. 2014 Feb 19;9(2):e81248. doi: 10.1371/journal.pone.0081248. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验