Suppr超能文献

运用几何代数的壳体弹性理论。

The elastic theory of shells using geometric algebra.

作者信息

Gregory A L, Lasenby J, Agarwal A

机构信息

Cambridge University Engineering Department , Trumpington Street, Cambridge CB2 1PZ, UK.

出版信息

R Soc Open Sci. 2017 Mar 8;4(3):170065. doi: 10.1098/rsos.170065. eCollection 2017 Mar.

Abstract

We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.

摘要

我们提出了一种新颖的壳体弹性理论推导方法。我们使用几何代数的语言,这使我们能够以无分量形式表达基本定律,从而有助于物理解释。它还提供了在任意坐标系中表达方程的工具,增强了方程的实用性。通过使用双向量表示法,明确了力矩和角速度的作用,以及先前作者使用非物理角速度的情况。在线性化理论中,澄清了先前导致混淆的坐标约定,并使得将先验应变引入壳体线性化理论成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/671e/5383861/08f8661584a5/rsos170065-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验