Suppr超能文献

无张量的各向异性:一种使用几何代数的新方法。

Anisotropy without tensors: a novel approach using geometric algebra.

作者信息

Matos Sérgio A, Ribeiro Marco A, Paiva Carlos R

出版信息

Opt Express. 2007 Nov 12;15(23):15175-86. doi: 10.1364/oe.15.015175.

Abstract

The most widespread approach to anisotropic media is dyadic analysis. However, to get a geometrical picture of a dielectric tensor, one has to resort to a coordinate system for a matrix form in order to obtain, for example, the index-ellipsoid, thereby obnubilating the deeper coordinate-free meaning of anisotropy itself. To overcome these shortcomings we present a novel approach to anisotropy: using geometric algebra we introduce a direct geometrical interpretation without the intervention of any coordinate system. By applying this new approach to biaxial crystals we show the effectiveness and insight that geometric algebra can bring to the optics of anisotropic media.

摘要

处理各向异性介质最普遍的方法是并矢分析。然而,要想得到介电张量的几何图像,就必须借助矩阵形式的坐标系,以便得到例如折射率椭球,从而模糊了各向异性本身更深层次的无坐标意义。为了克服这些缺点,我们提出了一种处理各向异性的新方法:利用几何代数,我们引入了一种无需任何坐标系介入的直接几何解释。通过将这种新方法应用于双轴晶体,我们展示了几何代数可以为各向异性介质光学带来的有效性和深刻见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验