Suppr超能文献

估计功能性外显子剪接调控信息的流行率。

Estimating the prevalence of functional exonic splice regulatory information.

作者信息

Savisaar Rosina, Hurst Laurence D

机构信息

The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.

出版信息

Hum Genet. 2017 Sep;136(9):1059-1078. doi: 10.1007/s00439-017-1798-3. Epub 2017 Apr 12.

Abstract

In addition to coding information, human exons contain sequences necessary for correct splicing. These elements are known to be under purifying selection and their disruption can cause disease. However, the density of functional exonic splicing information remains profoundly uncertain. Several groups have experimentally investigated how mutations at different exonic positions affect splicing. They have found splice information to be distributed widely in exons, with one estimate putting the proportion of splicing-relevant nucleotides at >90%. These results suggest that splicing could place a major pressure on exon evolution. However, analyses of sequence conservation have concluded that the need to preserve splice regulatory signals only slightly constrains exon evolution, with a resulting decrease in the average human rate of synonymous evolution of only 1-4%. Why do these two lines of research come to such different conclusions? Among other reasons, we suggest that the methods are measuring different things: one assays the density of sites that affect splicing, the other the density of sites whose effects on splicing are visible to selection. In addition, the experimental methods typically consider short exons, thereby enriching for nucleotides close to the splice junction, such sites being enriched for splice-control elements. By contrast, in part owing to correction for nucleotide composition biases and to the assumption that constraint only operates on exon ends, the conservation-based methods can be overly conservative.

摘要

除了编码信息外,人类外显子还包含正确剪接所需的序列。已知这些元件处于纯化选择之下,其破坏会导致疾病。然而,功能性外显子剪接信息的密度仍然极不确定。几个研究小组已经通过实验研究了不同外显子位置的突变如何影响剪接。他们发现剪接信息在外显子中广泛分布,一种估计认为与剪接相关的核苷酸比例超过90%。这些结果表明,剪接可能对外显子进化施加主要压力。然而,序列保守性分析得出结论,保留剪接调控信号的需求仅对外显子进化略有限制,导致人类同义进化平均速率仅下降1-4%。为什么这两条研究路线会得出如此不同的结论呢?在其他原因中,我们认为方法测量的是不同的东西:一种方法测定影响剪接的位点密度,另一种方法测定其对剪接的影响在选择中可见的位点密度。此外,实验方法通常考虑短外显子,从而富集靠近剪接连接点的核苷酸,这些位点富含剪接控制元件。相比之下,部分由于对核苷酸组成偏差的校正以及仅在外显子末端起作用的约束假设,基于保守性的方法可能过于保守。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a9/5602102/2489fceeb485/439_2017_1798_Fig1_HTML.jpg

相似文献

1
Estimating the prevalence of functional exonic splice regulatory information.
Hum Genet. 2017 Sep;136(9):1059-1078. doi: 10.1007/s00439-017-1798-3. Epub 2017 Apr 12.
3
Exonic splice regulation imposes strong selection at synonymous sites.
Genome Res. 2018 Oct;28(10):1442-1454. doi: 10.1101/gr.233999.117. Epub 2018 Aug 24.
4
Determinants of the Usage of Splice-Associated cis-Motifs Predict the Distribution of Human Pathogenic SNPs.
Mol Biol Evol. 2016 Feb;33(2):518-29. doi: 10.1093/molbev/msv251. Epub 2015 Nov 5.
6
Positive selection acting on splicing motifs reflects compensatory evolution.
Genome Res. 2008 Apr;18(4):533-43. doi: 10.1101/gr.070268.107. Epub 2008 Jan 18.
7
Purifying Selection on Exonic Splice Enhancers in Intronless Genes.
Mol Biol Evol. 2016 Jun;33(6):1396-418. doi: 10.1093/molbev/msw018. Epub 2016 Jan 23.
8
Exon Junction Complexes Suppress Spurious Splice Sites to Safeguard Transcriptome Integrity.
Mol Cell. 2018 Nov 1;72(3):482-495.e7. doi: 10.1016/j.molcel.2018.08.030.
9
Computational analysis of splicing errors and mutations in human transcripts.
BMC Genomics. 2008 Jan 14;9:13. doi: 10.1186/1471-2164-9-13.

引用本文的文献

1
Selection on synonymous sites: the unwanted transcript hypothesis.
Nat Rev Genet. 2024 Jun;25(6):431-448. doi: 10.1038/s41576-023-00686-7. Epub 2024 Jan 31.
2
The Power of Clinical Diagnosis for Deciphering Complex Genetic Mechanisms in Rare Diseases.
Genes (Basel). 2023 Jan 12;14(1):196. doi: 10.3390/genes14010196.
3
Modulation of pre-mRNA structure by hnRNP proteins regulates alternative splicing of .
Sci Adv. 2022 Aug 5;8(31):eabp9153. doi: 10.1126/sciadv.abp9153. Epub 2022 Aug 3.
5
Splicing in the Diagnosis of Rare Disease: Advances and Challenges.
Front Genet. 2021 Jul 1;12:689892. doi: 10.3389/fgene.2021.689892. eCollection 2021.
6
Mutational bias and the protein code shape the evolution of splicing enhancers.
Nat Commun. 2020 Jun 5;11(1):2845. doi: 10.1038/s41467-020-16673-z.
7
Interplay between coding and exonic splicing regulatory sequences.
Genome Res. 2019 May;29(5):711-722. doi: 10.1101/gr.241315.118. Epub 2019 Apr 8.
8
Exonic splice regulation imposes strong selection at synonymous sites.
Genome Res. 2018 Oct;28(10):1442-1454. doi: 10.1101/gr.233999.117. Epub 2018 Aug 24.
10
RES complex is associated with intron definition and required for zebrafish early embryogenesis.
PLoS Genet. 2018 Jul 3;14(7):e1007473. doi: 10.1371/journal.pgen.1007473. eCollection 2018 Jul.

本文引用的文献

1
Both Maintenance and Avoidance of RNA-Binding Protein Interactions Constrain Coding Sequence Evolution.
Mol Biol Evol. 2017 May 1;34(5):1110-1126. doi: 10.1093/molbev/msx061.
2
Coding Regions of Intrinsic Disorder Accommodate Parallel Functions.
Trends Biochem Sci. 2016 Nov;41(11):898-906. doi: 10.1016/j.tibs.2016.08.009. Epub 2016 Sep 16.
3
Massively Parallel Interrogation of the Effects of Gene Expression Levels on Fitness.
Cell. 2016 Aug 25;166(5):1282-1294.e18. doi: 10.1016/j.cell.2016.07.024. Epub 2016 Aug 18.
4
How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?
Trends Genet. 2016 Oct;32(10):596-606. doi: 10.1016/j.tig.2016.07.003. Epub 2016 Aug 6.
5
Backmasking in the yeast genome: encoding overlapping information for protein-coding and RNA degradation.
Nucleic Acids Res. 2016 Sep 30;44(17):8065-72. doi: 10.1093/nar/gkw683. Epub 2016 Aug 4.
6
Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function.
PLoS Genet. 2016 May 26;12(5):e1006082. doi: 10.1371/journal.pgen.1006082. eCollection 2016 May.
7
The Meaning of NMD: Translate or Perish.
Trends Genet. 2016 Jul;32(7):395-407. doi: 10.1016/j.tig.2016.04.007. Epub 2016 May 14.
9
dbDSM: a manually curated database for deleterious synonymous mutations.
Bioinformatics. 2016 Jun 15;32(12):1914-6. doi: 10.1093/bioinformatics/btw086. Epub 2016 Feb 15.
10
Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing.
J Mol Biol. 2016 Jun 19;428(12):2623-2635. doi: 10.1016/j.jmb.2016.04.017. Epub 2016 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验