Suppr超能文献

低秩嵌入的稳健图像特征提取。

Low-Rank Embedding for Robust Image Feature Extraction.

出版信息

IEEE Trans Image Process. 2017 Jun;26(6):2905-2917. doi: 10.1109/TIP.2017.2691543. Epub 2017 Apr 6.

Abstract

Robustness to noises, outliers, and corruptions is an important issue in linear dimensionality reduction. Since the sample-specific corruptions and outliers exist, the class-special structure or the local geometric structure is destroyed, and thus, many existing methods, including the popular manifold learning- based linear dimensionality methods, fail to achieve good performance in recognition tasks. In this paper, we focus on the unsupervised robust linear dimensionality reduction on corrupted data by introducing the robust low-rank representation (LRR). Thus, a robust linear dimensionality reduction technique termed low-rank embedding (LRE) is proposed in this paper, which provides a robust image representation to uncover the potential relationship among the images to reduce the negative influence from the occlusion and corruption so as to enhance the algorithm's robustness in image feature extraction. LRE searches the optimal LRR and optimal subspace simultaneously. The model of LRE can be solved by alternatively iterating the argument Lagrangian multiplier method and the eigendecomposition. The theoretical analysis, including convergence analysis and computational complexity, of the algorithms is presented. Experiments on some well-known databases with different corruptions show that LRE is superior to the previous methods of feature extraction, and therefore, it indicates the robustness of the proposed method. The code of this paper can be downloaded from http://www.scholat.com/laizhihui.

摘要

噪声、异常值和损坏的稳健性是线性降维的一个重要问题。由于存在特定于样本的损坏和异常值,因此破坏了类特殊结构或局部几何结构,从而导致许多现有方法(包括流行的基于流形学习的线性降维方法)在识别任务中无法取得良好的性能。在本文中,我们通过引入稳健的低秩表示(LRR)来关注损坏数据的无监督稳健线性降维。因此,本文提出了一种称为低秩嵌入(LRE)的稳健线性降维技术,它提供了一种稳健的图像表示,以揭示图像之间的潜在关系,从而减少遮挡和损坏的负面影响,从而提高算法在图像特征提取中的鲁棒性。LRE 同时搜索最优 LRR 和最优子空间。LRE 的模型可以通过交替迭代参数拉格朗日乘子法和特征分解来求解。给出了算法的理论分析,包括收敛性分析和计算复杂度。在具有不同损坏的一些知名数据库上的实验表明,LRE 优于先前的特征提取方法,因此表明了所提出方法的稳健性。本文的代码可以从 http://www.scholat.com/laizhihui 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验