Suppr超能文献

通过联合视频字典学习进行动态纹理建模。

Dynamical Textures Modeling via Joint Video Dictionary Learning.

出版信息

IEEE Trans Image Process. 2017 Jun;26(6):2929-2943. doi: 10.1109/TIP.2017.2691549. Epub 2017 Apr 6.

Abstract

Video representation is an important and challenging task in the computer vision community. In this paper, we consider the problem of modeling and classifying video sequences of dynamic scenes which could be modeled in a dynamic textures (DTs) framework. At first, we assume that image frames of a moving scene can be modeled as a Markov random process. We propose a sparse coding framework, named joint video dictionary learning (JVDL), to model a video adaptively. By treating the sparse coefficients of image frames over a learned dictionary as the underlying "states", we learn an efficient and robust linear transition matrix between two adjacent frames of sparse events in time series. Hence, a dynamic scene sequence is represented by an appropriate transition matrix associated with a dictionary. In order to ensure the stability of JVDL, we impose several constraints on such transition matrix and dictionary. The developed framework is able to capture the dynamics of a moving scene by exploring both the sparse properties and the temporal correlations of consecutive video frames. Moreover, such learned JVDL parameters can be used for various DT applications, such as DT synthesis and recognition. Experimental results demonstrate the strong competitiveness of the proposed JVDL approach in comparison with the state-of-the-art video representation methods. Especially, it performs significantly better in dealing with DT synthesis and recognition on heavily corrupted data.

摘要

视频表示是计算机视觉领域中的一个重要且具有挑战性的任务。在本文中,我们考虑了对动态场景的视频序列进行建模和分类的问题,这些序列可以在动态纹理 (DT) 框架中进行建模。首先,我们假设运动场景的图像帧可以建模为马尔可夫随机过程。我们提出了一种稀疏编码框架,称为联合视频字典学习 (JVDL),以自适应地对视频进行建模。通过将学习字典上的图像帧的稀疏系数视为底层“状态”,我们学习了在时间序列中两个相邻稀疏事件帧之间的高效和鲁棒线性转移矩阵。因此,适当的与字典相关联的转移矩阵表示动态场景序列。为了确保 JVDL 的稳定性,我们对这样的转移矩阵和字典施加了几个约束。所开发的框架通过探索连续视频帧的稀疏特性和时间相关性,能够捕捉运动场景的动态。此外,这种学习到的 JVDL 参数可用于各种 DT 应用,例如 DT 合成和识别。实验结果表明,与最先进的视频表示方法相比,所提出的 JVDL 方法具有很强的竞争力。特别是,它在处理严重损坏数据的 DT 合成和识别方面表现出色。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验