Suppr超能文献

使用字典模型的在线自适应图像重建(OnAIR)

Online Adaptive Image Reconstruction (OnAIR) Using Dictionary Models.

作者信息

Moore Brian E, Ravishankar Saiprasad, Nadakuditi Raj Rao, Fessler Jeffrey A

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109 USA.

出版信息

IEEE Trans Comput Imaging. 2020;6:153-166. doi: 10.1109/tci.2019.2931092.

Abstract

Sparsity and low-rank models have been popular for reconstructing images and videos from limited or corrupted measurements. Dictionary or transform learning methods are useful in applications such as denoising, inpainting, and medical image reconstruction. This paper proposes a framework for online (or time-sequential) adaptive reconstruction of dynamic image sequences from linear (typically undersampled) measurements. We model the spatiotemporal patches of the underlying dynamic image sequence as sparse in a dictionary, and we simultaneously estimate the dictionary and the images sequentially from streaming measurements. Multiple constraints on the adapted dictionary are also considered such as a unitary matrix, or low-rank dictionary atoms that provide additional efficiency or robustness. The proposed online algorithms are memory efficient and involve simple updates of the dictionary atoms, sparse coefficients, and images. Numerical experiments demonstrate the usefulness of the proposed methods in inverse problems such as video reconstruction or inpainting from noisy, subsampled pixels, and dynamic magnetic resonance image reconstruction from very limited measurements.

摘要

稀疏和低秩模型在从有限或损坏的测量中重建图像和视频方面很受欢迎。字典或变换学习方法在去噪、图像修复和医学图像重建等应用中很有用。本文提出了一个框架,用于从线性(通常是欠采样)测量中对动态图像序列进行在线(或时间序列)自适应重建。我们将底层动态图像序列的时空块建模为在字典中稀疏,并从流测量中顺序地同时估计字典和图像。还考虑了对适配字典的多个约束,例如酉矩阵或提供额外效率或鲁棒性的低秩字典原子。所提出的在线算法内存效率高,涉及字典原子、稀疏系数和图像的简单更新。数值实验证明了所提出的方法在诸如视频重建或从有噪声、下采样像素进行图像修复以及从非常有限的测量中进行动态磁共振图像重建等逆问题中的有用性。

相似文献

3
VIDOSAT: High-Dimensional Sparsifying Transform Learning for Online Video Denoising.VIDOSAT:用于在线视频去噪的高维稀疏变换学习。
IEEE Trans Image Process. 2019 Apr;28(4):1691-1704. doi: 10.1109/TIP.2018.2865684. Epub 2018 Aug 16.
6
Blind compressive sensing dynamic MRI.盲压缩感知动态 MRI。
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.
10
Bayesian nonparametric dictionary learning for compressed sensing MRI.贝叶斯非参数字典学习在压缩感知 MRI 中的应用。
IEEE Trans Image Process. 2014 Dec;23(12):5007-19. doi: 10.1109/TIP.2014.2360122. Epub 2014 Sep 24.

引用本文的文献

1
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.图像重建:从稀疏性到数据自适应方法与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.

本文引用的文献

1
Nomenclature for real-time magnetic resonance imaging.实时磁共振成像命名法
Magn Reson Med. 2019 Mar;81(3):1483-1484. doi: 10.1002/mrm.27487. Epub 2018 Sep 5.
2
VIDOSAT: High-Dimensional Sparsifying Transform Learning for Online Video Denoising.VIDOSAT:用于在线视频去噪的高维稀疏变换学习。
IEEE Trans Image Process. 2019 Apr;28(4):1691-1704. doi: 10.1109/TIP.2018.2865684. Epub 2018 Aug 16.
10
Learning doubly sparse transforms for images.学习图像的双重稀疏变换。
IEEE Trans Image Process. 2013 Dec;22(12):4598-612. doi: 10.1109/TIP.2013.2274384. Epub 2013 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验