Suppr超能文献

Watch-Dog:从腕戴加速度计检测自残行为。

Watch-Dog: Detecting Self-Harming Activities From Wrist Worn Accelerometers.

出版信息

IEEE J Biomed Health Inform. 2018 May;22(3):686-696. doi: 10.1109/JBHI.2017.2692179. Epub 2017 Apr 7.

Abstract

In a 2012 survey, in the United States alone, there were more than 35 000 reported suicides with approximately 1800 of being psychiatric inpatients. Recent Centers for Disease Control and Prevention (CDC) reports indicate an upward trend in these numbers. In psychiatric facilities, staff perform intermittent or continuous observation of patients manually in order to prevent such tragedies, but studies show that they are insufficient, and also consume staff time and resources. In this paper, we present the Watch-Dog system, to address the problem of detecting self-harming activities when attempted by in-patients in clinical settings. Watch-Dog comprises of three key components-Data sensed by tiny accelerometer sensors worn on wrists of subjects; an efficient algorithm to classify whether a user is active versus dormant (i.e., performing a physical activity versus not performing any activity); and a novel decision selection algorithm based on random forests and continuity indices for fine grained activity classification. With data acquired from 11 subjects performing a series of activities (both self-harming and otherwise), Watch-Dog achieves a classification accuracy of , , and for same-user 10-fold cross-validation, cross-user 10-fold cross-validation, and cross-user leave-one-out evaluation, respectively. We believe that the problem addressed in this paper is practical, important, and timely. We also believe that our proposed system is practically deployable, and related discussions are provided in this paper.

摘要

在 2012 年的一项调查中,仅在美国,就有超过 35000 例报告的自杀事件,其中约有 1800 例是住院精神病人。最近疾病控制与预防中心(CDC)的报告显示,这些数字呈上升趋势。在精神病院,工作人员为了防止此类悲剧的发生,会对患者进行间歇性或连续的人工观察,但研究表明,这种方法不够充分,还会消耗工作人员的时间和资源。在本文中,我们提出了 Watch-Dog 系统,以解决在临床环境中住院患者试图自残时检测自残活动的问题。Watch-Dog 由三个关键组件组成——佩戴在被试手腕上的微型加速度计传感器感知的数据;一种用于分类用户是活跃还是休眠(即执行身体活动与不执行任何活动)的高效算法;以及一种基于随机森林和连续性指标的新决策选择算法,用于进行细粒度的活动分类。通过从 11 名被试进行一系列活动(包括自残和其他活动)中获取的数据,Watch-Dog 在同用户 10 倍交叉验证、跨用户 10 倍交叉验证和跨用户留一法评估中,分别达到了 、 、的分类准确率。我们认为,本文所解决的问题具有实际意义、重要性和及时性。我们还相信,我们提出的系统在实际中是可部署的,本文提供了相关的讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验