Suppr超能文献

系统性功能扰动揭示驱动人类乳腺癌的预后遗传网络。

Systematic functional perturbations uncover a prognostic genetic network driving human breast cancer.

作者信息

Gallenne Tristan, Ross Kenneth N, Visser Nils L, Desmet Christophe J, Wittner Ben S, Wessels Lodewyk F A, Ramaswamy Sridhar, Peeper Daniel S

机构信息

Department of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan, CX, Amsterdam, The Netherlands.

Current address: Merus B.V., Padualaan, CH Utrecht, The Netherlands.

出版信息

Oncotarget. 2017 Mar 15;8(13):20572-20587. doi: 10.18632/oncotarget.16244.

Abstract

Prognostic classifiers conceivably comprise biomarker genes that functionally contribute to the oncogenic and metastatic properties of cancer, but this has not been investigated systematically. The transcription factor Fra-1 not only has an essential role in breast cancer, but also drives the expression of a highly prognostic gene set. Here, we systematically perturbed the function of 31 individual Fra-1-dependent poor-prognosis genes and examined their impact on breast cancer growth in vivo. We find that stable shRNA depletion of each of nine individual signature genes strongly inhibits breast cancer growth and aggressiveness. Several factors within this nine-gene set regulate each other's expression, suggesting that together they form a network. The nine-gene set is regulated by estrogen, ERBB2 and EGF signaling, all established breast cancer factors. We also uncover three transcription factors, MYC, E2F1 and TP53, which act alongside Fra-1 at the core of this network. ChIP-Seq analysis reveals that a substantial number of genes are bound, and regulated, by all four transcription factors. The nine-gene set retains significant prognostic power and includes several potential therapeutic targets, including the bifunctional enzyme PAICS, which catalyzes purine biosynthesis. Depletion of PAICS largely cancelled breast cancer expansion, exemplifying a prognostic gene with breast cancer activity. Our data uncover a core genetic and prognostic network driving human breast cancer. We propose that pharmacological inhibition of components within this network, such as PAICS, may be used in conjunction with the Fra-1 prognostic classifier towards personalized management of poor prognosis breast cancer.

摘要

预后分类器可能包含对癌症的致癌和转移特性有功能贡献的生物标志物基因,但尚未对此进行系统研究。转录因子Fra-1不仅在乳腺癌中起关键作用,还驱动一组高度预后基因的表达。在这里,我们系统地干扰了31个依赖Fra-1的预后不良基因的功能,并研究了它们对体内乳腺癌生长的影响。我们发现,九个单独的特征基因中每个基因的稳定shRNA缺失都强烈抑制乳腺癌的生长和侵袭性。这个九基因集中的几个因子相互调节彼此的表达,表明它们共同形成一个网络。九基因集受雌激素、ERBB2和EGF信号传导调节,这些都是已确定的乳腺癌相关因子。我们还发现了三个转录因子MYC、E2F1和TP53,它们与Fra-1一起在这个网络的核心发挥作用。ChIP-Seq分析表明,大量基因被所有四个转录因子结合并调控。九基因集保留了显著的预后能力,并包括几个潜在的治疗靶点,包括催化嘌呤生物合成的双功能酶PAICS。PAICS的缺失在很大程度上消除了乳腺癌的扩张,这例证了一个具有乳腺癌活性的预后基因。我们的数据揭示了一个驱动人类乳腺癌的核心遗传和预后网络。我们建议,对这个网络中的成分(如PAICS)进行药理抑制,可与Fra-1预后分类器联合使用,用于预后不良乳腺癌的个性化管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc21/5400527/a46333d7cf93/oncotarget-08-20572-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验