Suppr超能文献

新型(βα)桶状酶实时进化过程中的结构与功能创新

Structural and functional innovations in the real-time evolution of new (βα) barrel enzymes.

作者信息

Newton Matilda S, Guo Xiaohu, Söderholm Annika, Näsvall Joakim, Lundström Patrik, Andersson Dan I, Selmer Maria, Patrick Wayne M

机构信息

Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.

Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2017 May 2;114(18):4727-4732. doi: 10.1073/pnas.1618552114. Epub 2017 Apr 17.

Abstract

New genes can arise by duplication and divergence, but there is a fundamental gap in our understanding of the relationship between these genes, the evolving proteins they encode, and the fitness of the organism. Here we used crystallography, NMR dynamics, kinetics, and mass spectrometry to explain the molecular innovations that arose during a previous real-time evolution experiment. In that experiment, the (βα) barrel enzyme HisA was under selection for two functions (HisA and TrpF), resulting in duplication and divergence of the gene to encode TrpF specialists, HisA specialists, and bifunctional generalists. We found that selection affects enzyme structure and dynamics, and thus substrate preference, simultaneously and sequentially. Bifunctionality is associated with two distinct sets of loop conformations, each essential for one function. We observed two mechanisms for functional specialization: structural stabilization of each loop conformation and substrate-specific adaptation of the active site. Intracellular enzyme performance, calculated as the product of catalytic efficiency and relative expression level, was not linearly related to fitness. Instead, we observed thresholds for each activity above which further improvements in catalytic efficiency had little if any effect on growth rate. Overall, we have shown how beneficial substitutions selected during real-time evolution can lead to manifold changes in enzyme function and bacterial fitness. This work emphasizes the speed at which adaptive evolution can yield enzymes with sufficiently high activities such that they no longer limit the growth of their host organism, and confirms the (βα) barrel as an inherently evolvable protein scaffold.

摘要

新基因可通过复制和分化产生,但在我们对这些基因、它们所编码的不断进化的蛋白质以及生物体适应性之间关系的理解上存在一个基本差距。在此,我们利用晶体学、核磁共振动力学、动力学和质谱来解释在之前的实时进化实验中出现的分子创新。在该实验中,(βα)桶状酶HisA因两种功能(HisA和TrpF)而受到选择,导致该基因复制和分化,以编码TrpF特化酶、HisA特化酶和双功能通用酶。我们发现选择会同时并依次影响酶的结构和动力学,进而影响底物偏好。双功能性与两组不同的环构象相关,每组构象对一种功能至关重要。我们观察到两种功能特化机制:每种环构象的结构稳定以及活性位点的底物特异性适应。以催化效率和相对表达水平的乘积计算的细胞内酶性能与适应性并非线性相关。相反,我们观察到每种活性都有一个阈值,超过该阈值后催化效率的进一步提高对生长速率几乎没有影响。总体而言,我们展示了在实时进化过程中选择的有益替代如何导致酶功能和细菌适应性的多种变化。这项工作强调了适应性进化能够以多快的速度产生具有足够高活性以至于不再限制其宿主生物体生长的酶,并证实了(βα)桶状结构是一种本质上可进化的蛋白质支架。

相似文献

1
Structural and functional innovations in the real-time evolution of new (βα) barrel enzymes.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4727-4732. doi: 10.1073/pnas.1618552114. Epub 2017 Apr 17.
2
Mutational Pathways and Trade-Offs Between HisA and TrpF Functions: Implications for Evolution via Gene Duplication and Divergence.
Front Microbiol. 2020 Oct 14;11:588235. doi: 10.3389/fmicb.2020.588235. eCollection 2020.
3
Directed evolution of a (beta alpha)8-barrel enzyme to catalyze related reactions in two different metabolic pathways.
Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9925-30. doi: 10.1073/pnas.160255397.
7
Two-step Ligand Binding in a (βα)8 Barrel Enzyme: SUBSTRATE-BOUND STRUCTURES SHED NEW LIGHT ON THE CATALYTIC CYCLE OF HisA.
J Biol Chem. 2015 Oct 9;290(41):24657-68. doi: 10.1074/jbc.M115.678086. Epub 2015 Aug 20.
8
Simulations reveal the key role of Arg15 in the promiscuous activity in the HisA enzyme.
Org Biomol Chem. 2021 Dec 15;19(48):10652-10661. doi: 10.1039/d1ob02029c.
10
Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels.
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16448-53. doi: 10.1073/pnas.0405832101. Epub 2004 Nov 11.

引用本文的文献

1
Catalytic Redundancies and Conformational Plasticity Drives Selectivity and Promiscuity in Quorum Quenching Lactonases.
JACS Au. 2024 Aug 23;4(9):3519-3536. doi: 10.1021/jacsau.4c00404. eCollection 2024 Sep 23.
2
Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα)-Barrel Enzyme of Histidine Biosynthesis HisF.
JACS Au. 2024 Aug 15;4(8):3258-3276. doi: 10.1021/jacsau.4c00558. eCollection 2024 Aug 26.
3
Back in time to the Gly-rich prototype of the phosphate binding elementary function.
Curr Res Struct Biol. 2024 Apr 9;7:100142. doi: 10.1016/j.crstbi.2024.100142. eCollection 2024.
4
Retracing the Rapid Evolution of an Herbicide-Degrading Enzyme by Protein Engineering.
ACS Catal. 2023 Nov 17;13(23):15558-15571. doi: 10.1021/acscatal.3c04010.
5
Loop dynamics and the evolution of enzyme activity.
Nat Rev Chem. 2023 Aug;7(8):536-547. doi: 10.1038/s41570-023-00495-w. Epub 2023 May 24.
7
Uniform binding and negative catalysis at the origin of enzymes.
Protein Sci. 2022 Aug;31(8):e4381. doi: 10.1002/pro.4381.
8
Enabling Role of Ligand-Driven Conformational Changes in Enzyme Evolution.
Biochemistry. 2022 Aug 2;61(15):1533-1542. doi: 10.1021/acs.biochem.2c00178. Epub 2022 Jul 13.
10
Evolution, folding, and design of TIM barrels and related proteins.
Curr Opin Struct Biol. 2021 Jun;68:94-104. doi: 10.1016/j.sbi.2020.12.007. Epub 2021 Jan 13.

本文引用的文献

1
The role of protein dynamics in the evolution of new enzyme function.
Nat Chem Biol. 2016 Nov;12(11):944-950. doi: 10.1038/nchembio.2175. Epub 2016 Sep 12.
2
Compensating the Fitness Costs of Synonymous Mutations.
Mol Biol Evol. 2016 Jun;33(6):1461-77. doi: 10.1093/molbev/msw028. Epub 2016 Feb 16.
3
How mutational epistasis impairs predictability in protein evolution and design.
Protein Sci. 2016 Jul;25(7):1260-72. doi: 10.1002/pro.2876. Epub 2016 Jan 22.
4
Two-step Ligand Binding in a (βα)8 Barrel Enzyme: SUBSTRATE-BOUND STRUCTURES SHED NEW LIGHT ON THE CATALYTIC CYCLE OF HisA.
J Biol Chem. 2015 Oct 9;290(41):24657-68. doi: 10.1074/jbc.M115.678086. Epub 2015 Aug 20.
6
Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes.
J R Soc Interface. 2015 Jun 6;12(107). doi: 10.1098/rsif.2015.0036.
7
Origins of major archaeal clades correspond to gene acquisitions from bacteria.
Nature. 2015 Jan 1;517(7532):77-80. doi: 10.1038/nature13805. Epub 2014 Oct 15.
8
The spectrum of adaptive mutations in experimental evolution.
Genomics. 2014 Dec;104(6 Pt A):412-6. doi: 10.1016/j.ygeno.2014.09.011. Epub 2014 Sep 28.
10
The robustness and innovability of protein folds.
Curr Opin Struct Biol. 2014 Jun;26:131-8. doi: 10.1016/j.sbi.2014.06.007. Epub 2014 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验