Suppr超能文献

鉴定和突变分析 GH5_5 纤维素酶 TIM 桶表面的非保守残基,以提高催化效率和稳定性。

Identification and Mutation Analysis of Nonconserved Residues on the TIM-Barrel Surface of GH5_5 Cellulases for Catalytic Efficiency and Stability Improvement.

机构信息

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciencesgrid.410727.7, Beijing, People's Republic of China.

Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, People's Republic of China.

出版信息

Appl Environ Microbiol. 2022 Sep 13;88(17):e0104622. doi: 10.1128/aem.01046-22. Epub 2022 Aug 24.

Abstract

Exploring the potential functions of nonconserved residues on the outer side of α-helices and systematically optimizing them are pivotal for their application in protein engineering. Based on the evolutionary structural conservation analysis of GH5_5 cellulases, a practical molecular improvement strategy was developed. Highly variable sites on the outer side of the α-helices of the GH5_5 cellulase from Aspergillus niger (Cel5A) were screened, and 14 out of the 34 highly variable sites were confirmed to exert a positive effect on the activity. After the modular combination of the positive mutations, the catalytic efficiency of the mutants was further improved. By using CMC-Na as the substrate, the catalytic efficiency and specific activity of variant Cel5A_N193A/T300P/D307P were approximately 2.0-fold that of Cel5A (227 ± 21 451 ± 43 ml/s/mg and 1,726 ± 19 versus 3,472 ± 42 U/mg, respectively). The half-life () of variant Cel5A_N193A/T300P/D307P at 75°C was 2.36 times that of Cel5A. The role of these sites was successfully validated in other GH5_5 cellulases. Computational analyses revealed that the flexibility of the loop 6-loop 7-loop 8 region was responsible for the increased catalytic performance. This work not only illustrated the important role of rapidly evolving positions on the outer side of the α-helices of GH5_5 cellulases but also revealed new insights into engineering the proteins that nature left as clues for us to find. A comprehensive understanding of the residues on the α-helices of the GH5_5 cellulases is important for catalytic efficiency and stability improvement. The main objective of this study was to use the evolutionary conservation and plasticity of the TIM-barrel fold to probe the relationship between nonconserved residues on the outer side of the α-helices and the catalytic efficiency of GH5_5 cellulases by conducting structure-guided protein engineering. By using a four-step nonconserved residue screening strategy, the functional role of nonconserved residues on the outer side of the α-helices was effectively identified, and a variant with superior performance and capability was constructed. Hence, this study proved the effectiveness of this strategy in engineering GH5_5 cellulases and provided a potential competitor for industrial applications. Furthermore, this study sheds new light on engineering TIM-barrel proteins.

摘要

探索α-螺旋外侧非保守残基的潜在功能,并对其进行系统优化,对于其在蛋白质工程中的应用至关重要。基于 GH5_5 纤维素酶的进化结构保守性分析,开发了一种实用的分子改良策略。筛选出黑曲霉 Cel5A 的α-螺旋外侧高度可变的位点,其中 34 个高度可变的位点中有 14 个被证实对活性有积极影响。对阳性突变进行模块组合后,突变体的催化效率进一步提高。以 CMC-Na 为底物时,变体 Cel5A_N193A/T300P/D307P 的催化效率和比活性约为 Cel5A 的 2.0 倍(227±21、451±43 和 1,726±19 对 3,472±42 U/mg)。变体 Cel5A_N193A/T300P/D307P 的半衰期()在 75°C 时是 Cel5A 的 2.36 倍。这些位点的作用在其他 GH5_5 纤维素酶中得到了成功验证。计算分析表明,loop 6-loop 7-loop 8 区域的灵活性是提高催化性能的原因。这项工作不仅说明了 GH5_5 纤维素酶α-螺旋外侧快速进化位置的重要作用,而且为我们寻找自然界留下的蛋白质工程提供了新的见解。全面了解 GH5_5 纤维素酶的α-螺旋上的残基对于提高催化效率和稳定性非常重要。本研究的主要目的是利用 TIM 桶折叠的进化保守性和可塑性,通过进行结构导向的蛋白质工程,探究α-螺旋外侧非保守残基与 GH5_5 纤维素酶催化效率之间的关系。通过采用四步非保守残基筛选策略,有效地确定了α-螺旋外侧非保守残基的功能作用,并构建了具有优异性能和能力的变体。因此,本研究证明了该策略在 GH5_5 纤维素酶工程中的有效性,并为工业应用提供了一种潜在的竞争者。此外,本研究为 TIM 桶蛋白的工程学提供了新的思路。

相似文献

2
Activity and Thermostability of GH5 Endoglucanase Chimeras from Mesophilic and Thermophilic Parents.
Appl Environ Microbiol. 2019 Feb 20;85(5). doi: 10.1128/AEM.02079-18. Print 2019 Mar 1.
3
Enhancing the catalytic activity of a novel GH5 cellulase Cel5 from CBS 900.73 by site-directed mutagenesis on loop 6.
Biotechnol Biofuels. 2018 Mar 22;11:76. doi: 10.1186/s13068-018-1080-5. eCollection 2018.
4
Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase.
Biochem Biophys Res Commun. 2016 Jun 17;475(1):8-12. doi: 10.1016/j.bbrc.2016.05.012. Epub 2016 May 3.
5
Structural and functional insights of the catalytic GH5 and Calx-β domains from the metagenome-derived endoglucanase CelE2.
Enzyme Microb Technol. 2023 Apr;165:110206. doi: 10.1016/j.enzmictec.2023.110206. Epub 2023 Jan 27.
6
Dynamics of loops surrounding the active site architecture in GH5_2 subfamily TfCel5A for cellulose degradation.
Biotechnol Biofuels Bioprod. 2023 Oct 18;16(1):154. doi: 10.1186/s13068-023-02411-2.
9
Study and design of stability in GH5 cellulases.
Biotechnol Bioeng. 2012 Jan;109(1):31-44. doi: 10.1002/bit.23280. Epub 2011 Aug 18.
10
Comparative molecular dynamics simulations identify a salt-sensitive loop responsible for the halotolerant activity of GH5 cellulases.
J Biomol Struct Dyn. 2022;40(19):9522-9529. doi: 10.1080/07391102.2021.1930167. Epub 2021 May 27.

引用本文的文献

1
Semi-rational engineering of an α-L-fucosidase for regioselective synthesis of fucosyl--acetylglucosamine disaccharides.
Food Chem (Oxf). 2025 Feb 11;10:100244. doi: 10.1016/j.fochms.2025.100244. eCollection 2025 Jun.

本文引用的文献

1
Glycosyl hydrolases family 5, subfamily 5: Relevance and structural insights for designing improved biomass degrading cocktails.
Int J Biol Macromol. 2021 Dec 15;193(Pt A):980-995. doi: 10.1016/j.ijbiomac.2021.10.062. Epub 2021 Oct 16.
4
Parallel molecular mechanisms for enzyme temperature adaptation.
Science. 2021 Mar 5;371(6533). doi: 10.1126/science.aay2784.
10
A novel thermostable cellulase cocktail enhances lignocellulosic bioconversion and biorefining in a broad range of pH.
Int J Biol Macromol. 2020 Jul 1;154:349-360. doi: 10.1016/j.ijbiomac.2020.03.100. Epub 2020 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验