Suppr超能文献

配体/蛋白质结合动力学模拟的观点:力场、机器学习、采样和用户友好性。

Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness.

机构信息

Faculty of Biomedical Sciences, Euler Institute, Universitá della Svizzera italiana (USI), 6900 Lugano, Switzerland.

Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.

出版信息

J Chem Theory Comput. 2023 Sep 26;19(18):6047-6061. doi: 10.1021/acs.jctc.3c00641. Epub 2023 Sep 1.

Abstract

Computational techniques applied to drug discovery have gained considerable popularity for their ability to filter potentially active drugs from inactive ones, reducing the time scale and costs of preclinical investigations. The main focus of these studies has historically been the search for compounds endowed with high affinity for a specific molecular target to ensure the formation of stable and long-lasting complexes. Recent evidence has also correlated the in vivo drug efficacy with its binding kinetics, thus opening new fascinating scenarios for ligand/protein binding kinetic simulations in drug discovery. The present article examines the state of the art in the field, providing a brief summary of the most popular and advanced ligand/protein binding kinetics techniques and evaluating their current limitations and the potential solutions to reach more accurate kinetic models. Particular emphasis is put on the need for a paradigm change in the present methodologies toward ligand and protein parametrization, the force field problem, characterization of the transition states, the sampling issue, and algorithms' performance, user-friendliness, and data openness.

摘要

计算技术在药物发现中的应用因其能够从非活性药物中筛选出潜在的活性药物,从而缩短了临床前研究的时间和成本,受到了广泛关注。这些研究的主要重点历来是寻找与特定分子靶标具有高亲和力的化合物,以确保形成稳定和持久的复合物。最近的证据还将体内药物疗效与其结合动力学相关联,从而为药物发现中的配体/蛋白质结合动力学模拟开辟了新的迷人场景。本文考察了该领域的最新进展,简要总结了最流行和先进的配体/蛋白质结合动力学技术,并评估了它们目前的局限性和潜在的解决方案,以获得更准确的动力学模型。特别强调需要对目前的配体和蛋白质参数化、力场问题、过渡态特征、采样问题以及算法性能、易用性和数据开放性等方面的方法进行范式转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5134/10536999/512f789755fd/ct3c00641_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验