Suppr超能文献

农业纳米技术的综合方法:挑战与未来趋势

Integrated Approach of Agri-nanotechnology: Challenges and Future Trends.

作者信息

Mishra Sandhya, Keswani Chetan, Abhilash P C, Fraceto Leonardo F, Singh Harikesh Bahadur

机构信息

Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu UniversityVaranasi, India.

Institute of Environment and Sustainable Development, Banaras Hindu UniversityVaranasi, India.

出版信息

Front Plant Sci. 2017 Apr 4;8:471. doi: 10.3389/fpls.2017.00471. eCollection 2017.

Abstract

Nanotechnology representing a new frontier in modern agriculture is anticipated to become a major thrust in near future by offering potential applications. This integrating approach, i.e., agri-nanotechnology has great potential to cope with global challenges of food production/security, sustainability and climate change. However, despite the potential benefits of nanotechnology in agriculture so far, their relevance has not reached up to the field conditions. The elevating concerns about fate, transport, bioavailability, nanoparticles toxicity and inappropriateness of regulatory framework limit the complete acceptance and inclination to adopt nanotechnologies in agricultural sector. Moreover, the current research trends lack realistic approach that fail to attain comprehensive knowledge of risk assessment factors and further toxicity of nanoparticles toward agroecosystem components . plant, soil, soil microbiomes after their release into the environment. Hence in the present review we attempt to suggest certain key points to be addressed in the current and future agri-nanotechnology researches on the basis of recognized knowledge gaps with strong recommendation of incorporating biosynthesized nanoparticles to carry out analogous functions. In this perspective, the major points are as follows: (i) Mitigating risk assessment factors (responsible for fate, transport, behavior, bioavailability and toxicity) for alleviating the subsequent toxicity of nanoparticles. (ii) Optimizing permissible level of nanoparticles dose within the safety limits by performing dose dependent studies. (iii) Adopting realistic approach by designing the experiments in natural habitat and avoiding assays for accurate interpretation. (iv) Most importantly, translating environmental friendly and non-toxic biosynthesized nanoparticles from laboratory to field conditions for agricultural benefits.

摘要

纳米技术作为现代农业的一个新前沿领域,有望通过提供潜在应用在不久的将来成为一个主要发展方向。这种整合方法,即农业纳米技术,在应对粮食生产/安全、可持续性和气候变化等全球挑战方面具有巨大潜力。然而,尽管纳米技术目前在农业中具有潜在益处,但其相关性尚未在田间条件下得到充分体现。对纳米颗粒的归宿、迁移、生物可利用性、毒性以及监管框架的不完善等问题的日益担忧,限制了农业部门对纳米技术的完全接受和采用意愿。此外,当前的研究趋势缺乏现实方法,未能全面了解风险评估因素以及纳米颗粒释放到环境后对农业生态系统组成部分(植物、土壤、土壤微生物群落)的进一步毒性。因此,在本综述中,我们试图根据已认识到的知识差距,就当前和未来农业纳米技术研究中需要解决的某些关键点提出建议,并强烈推荐纳入生物合成纳米颗粒以发挥类似功能。从这个角度来看,主要要点如下:(i)减轻风险评估因素(负责纳米颗粒的归宿、迁移、行为、生物可利用性和毒性)以减轻纳米颗粒随后的毒性。(ii)通过进行剂量依赖性研究,在安全限度内优化纳米颗粒剂量的允许水平。(iii)通过在自然栖息地设计实验并避免进行不准确解释的试验,采用现实方法。(iv)最重要的是,将环境友好且无毒的生物合成纳米颗粒从实验室转化到田间条件以实现农业效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9abd/5378785/f1eca9c8b40a/fpls-08-00471-g001.jpg

相似文献

1
Integrated Approach of Agri-nanotechnology: Challenges and Future Trends.
Front Plant Sci. 2017 Apr 4;8:471. doi: 10.3389/fpls.2017.00471. eCollection 2017.
2
Nanotechnology in agri-food production: an overview.
Nanotechnol Sci Appl. 2014 May 20;7:31-53. doi: 10.2147/NSA.S39406. eCollection 2014.
3
Nanotechnology in agri-food sector.
Crit Rev Food Sci Nutr. 2014;54(8):975-84. doi: 10.1080/10408398.2011.621095.
4
Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment.
Sci Total Environ. 2021 May 10;768:144990. doi: 10.1016/j.scitotenv.2021.144990. Epub 2021 Jan 8.
5
Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture.
Appl Microbiol Biotechnol. 2015 Feb;99(3):1097-107. doi: 10.1007/s00253-014-6296-0. Epub 2014 Dec 31.
6
Opportunities and challenges for nanotechnology in the agri-tech revolution.
Nat Nanotechnol. 2019 Jun;14(6):517-522. doi: 10.1038/s41565-019-0461-7. Epub 2019 Jun 5.
7
Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects.
Environ Pollut. 2022 Feb 15;295:118722. doi: 10.1016/j.envpol.2021.118722. Epub 2021 Dec 21.
8
Nanoagroparticles emerging trends and future prospect in modern agriculture system.
Environ Toxicol Pharmacol. 2017 Jul;53:10-17. doi: 10.1016/j.etap.2017.04.012. Epub 2017 Apr 23.
9
Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives.
Sci Total Environ. 2021 Oct 20;792:148359. doi: 10.1016/j.scitotenv.2021.148359. Epub 2021 Jun 8.
10
Prospects, challenges and need for regulation of nanotechnology with special reference to India.
Ecotoxicol Environ Saf. 2019 Apr 30;171:677-682. doi: 10.1016/j.ecoenv.2018.12.085. Epub 2019 Jan 16.

引用本文的文献

1
Isolation and Screening of the Novel Multi-Trait Strains for Future Implications in Phytotechnology.
Microorganisms. 2025 Aug 15;13(8):1902. doi: 10.3390/microorganisms13081902.
3
Application of nanotechnology in fruit crops-from synthesis to sustainable packaging.
PeerJ. 2025 Jun 23;13:e19603. doi: 10.7717/peerj.19603. eCollection 2025.
4
Analysis of research status and trends on nano-agricultural application: a bibliometric study.
Front Plant Sci. 2025 Feb 17;16:1530629. doi: 10.3389/fpls.2025.1530629. eCollection 2025.
5
Antibacterial Activity of Sustainable Thymol Nanoemulsion Formulations Against the Bacterial Blight Disease on Cluster Bean Caused by .
Indian J Microbiol. 2024 Jun;64(2):694-704. doi: 10.1007/s12088-024-01256-z. Epub 2024 Apr 5.
6
8
Copper and Silver Nanoparticle Seed Priming and Foliar Spray Modulate Plant Growth and Thrips Infestation in spp.
ACS Omega. 2024 Jan 6;9(3):3430-3444. doi: 10.1021/acsomega.3c06961. eCollection 2024 Jan 23.
9
Efficacy of Biogenic Zinc Oxide Nanoparticles in Treating Wastewater for Sustainable Wheat Cultivation.
Plants (Basel). 2023 Aug 25;12(17):3058. doi: 10.3390/plants12173058.
10
Nanoengineered particles for sustainable crop production: potentials and challenges.
3 Biotech. 2023 May;13(5):163. doi: 10.1007/s13205-023-03588-x. Epub 2023 May 5.

本文引用的文献

2
TiO nanoparticle biosynthesis and its physiological effect on mung bean ( L.).
Biotechnol Rep (Amst). 2014 Nov 4;5:22-26. doi: 10.1016/j.btre.2014.10.009. eCollection 2015 Mar.
3
Nanotechnology Applied to Bio-Encapsulation of Pesticides.
J Nanosci Nanotechnol. 2016 Jan;16(1):1231-4. doi: 10.1166/jnn.2016.12332.
4
Biological Synthesis of Nanoparticles from Plants and Microorganisms.
Trends Biotechnol. 2016 Jul;34(7):588-599. doi: 10.1016/j.tibtech.2016.02.006. Epub 2016 Mar 2.
6
Green synthesis of nanoparticles and its potential application.
Biotechnol Lett. 2016 Apr;38(4):545-60. doi: 10.1007/s10529-015-2026-7. Epub 2015 Dec 31.
9
Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants.
PLoS One. 2015 Jul 17;10(7):e0132971. doi: 10.1371/journal.pone.0132971. eCollection 2015.
10
Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries.
Regul Toxicol Pharmacol. 2015 Oct;73(1):463-76. doi: 10.1016/j.yrtph.2015.06.016. Epub 2015 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验