Suppr超能文献

量子增强的马尔可夫逻辑网络推理。

Quantum Enhanced Inference in Markov Logic Networks.

机构信息

ICFO-The Institute of Photonic Sciences, 08860 Castelldefels (Barcelona), Spain.

University of Borås, 50190 Borås, Sweden.

出版信息

Sci Rep. 2017 Apr 19;7:45672. doi: 10.1038/srep45672.

Abstract

Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

摘要

马尔可夫逻辑网络(MLN)调和了机器学习和人工智能中的两个对立学派:因果网络,它可以很好地解释不确定性,以及一阶逻辑,它允许进行形式推理。MLN 本质上是一个生成马尔可夫网络的一阶逻辑模板。MLN 中的推理是概率性的,通常通过近似方法(如马尔可夫链蒙特卡罗(MCMC)吉布斯采样)来执行。MLN 具有许多规则、对称的结构,可以在一阶和生成的马尔可夫网络中得到利用。我们分析了由各种提升方法产生的图结构,并研究了量子协议在状态准备和测量方案下用于加速吉布斯采样的程度。我们回顾了不同的方法,讨论了它们的优点、理论限制以及它们对实现的吸引力。我们发现,与经典启发式方法相比,最近的一项结果在近似概率推理中的应用可以带来指数级的加速,从而证明了量子资源在机器学习中可能具有潜在用途的另一个例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d990/5395824/80a73af724b0/srep45672-f1.jpg

相似文献

1
Quantum Enhanced Inference in Markov Logic Networks.
Sci Rep. 2017 Apr 19;7:45672. doi: 10.1038/srep45672.
2
Learning a Markov Logic network for supervised gene regulatory network inference.
BMC Bioinformatics. 2013 Sep 12;14:273. doi: 10.1186/1471-2105-14-273.
3
Probabilistic logic methods and some applications to biology and medicine.
J Comput Biol. 2012 Mar;19(3):316-36. doi: 10.1089/cmb.2011.0234.
4
Dynamic Context-Aware Event Recognition Based on Markov Logic Networks.
Sensors (Basel). 2017 Mar 2;17(3):491. doi: 10.3390/s17030491.
5
Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.
Genetics. 2015 Apr;199(4):973-89. doi: 10.1534/genetics.114.172619. Epub 2015 Jan 28.
6
Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems.
Phys Rev Lett. 2020 Jan 17;124(2):020503. doi: 10.1103/PhysRevLett.124.020503.
7
Quantum-enhanced Markov chain Monte Carlo.
Nature. 2023 Jul;619(7969):282-287. doi: 10.1038/s41586-023-06095-4. Epub 2023 Jul 12.
8
Quantum Sampling Algorithms for Near-Term Devices.
Phys Rev Lett. 2021 Sep 3;127(10):100504. doi: 10.1103/PhysRevLett.127.100504.
9
Using multi-step proposal distribution for improved MCMC convergence in Bayesian network structure learning.
EURASIP J Bioinform Syst Biol. 2015 Jun 20;2015:6. doi: 10.1186/s13637-015-0024-7. eCollection 2015 Dec.
10
A full bayesian approach for boolean genetic network inference.
PLoS One. 2014 Dec 31;9(12):e115806. doi: 10.1371/journal.pone.0115806. eCollection 2014.

引用本文的文献

2
Quantum cyber-physical systems.
Sci Rep. 2022 May 13;12(1):7964. doi: 10.1038/s41598-022-11691-x.
4
Quantum machine learning.
Nature. 2017 Sep 13;549(7671):195-202. doi: 10.1038/nature23474.

本文引用的文献

2
Duality quantum algorithm efficiently simulates open quantum systems.
Sci Rep. 2016 Jul 28;6:30727. doi: 10.1038/srep30727.
3
Determination and correction of persistent biases in quantum annealers.
Sci Rep. 2016 Jan 19;6:18628. doi: 10.1038/srep18628.
4
A quantum annealing architecture with all-to-all connectivity from local interactions.
Sci Adv. 2015 Oct 23;1(9):e1500838. doi: 10.1126/sciadv.1500838. eCollection 2015 Oct.
5
Simulating Hamiltonian dynamics with a truncated Taylor series.
Phys Rev Lett. 2015 Mar 6;114(9):090502. doi: 10.1103/PhysRevLett.114.090502. Epub 2015 Mar 3.
6
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Science. 2014 Aug 1;345(6196):532-5. doi: 10.1126/science.1253512. Epub 2014 May 29.
7
Nanophotonic quantum phase switch with a single atom.
Nature. 2014 Apr 10;508(7495):241-4. doi: 10.1038/nature13188.
8
A quantum gate between a flying optical photon and a single trapped atom.
Nature. 2014 Apr 10;508(7495):237-40. doi: 10.1038/nature13177.
9
Thermalization in nature and on a quantum computer.
Phys Rev Lett. 2012 Feb 24;108(8):080402. doi: 10.1103/PhysRevLett.108.080402. Epub 2012 Feb 23.
10
Quantum annealing with manufactured spins.
Nature. 2011 May 12;473(7346):194-8. doi: 10.1038/nature10012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验