Suppr超能文献

基于傅里叶光学的量子路径计算理论及其在量子霸权、神经网络和非线性薛定谔方程方面的未来应用。

Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations.

作者信息

Gulbahar Burhan

机构信息

Department of Electrical and Electronics Engineering, Ozyegin University, 34794, Istanbul, Turkey.

出版信息

Sci Rep. 2020 Jul 3;10(1):10968. doi: 10.1038/s41598-020-67364-0.

Abstract

The scalability, error correction and practical problem solving are important challenges for quantum computing (QC) as more emphasized by quantum supremacy (QS) experiments. Quantum path computing (QPC), recently introduced for linear optic based QCs as an unconventional design, targets to obtain scalability and practical problem solving. It samples the intensity from the interference of exponentially increasing number of propagation paths obtained in multi-plane diffraction (MPD) of classical particle sources. QPC exploits MPD based quantum temporal correlations of the paths and freely entangled projections at different time instants, for the first time, with the classical light source and intensity measurement while not requiring photon interactions or single photon sources and receivers. In this article, photonic QPC is defined, theoretically modeled and numerically analyzed for arbitrary Fourier optical or quadratic phase set-ups while utilizing both Gaussian and Hermite-Gaussian source laser modes. Problem solving capabilities already including partial sum of Riemann theta functions are extended. Important future applications, implementation challenges and open issues such as universal computation and quantum circuit implementations determining the scope of QC capabilities are discussed. The applications include QS experiments reaching more than [Formula: see text] Feynman paths, quantum neuron implementations and solutions of nonlinear Schrödinger equation.

摘要

如量子霸权(QS)实验所更强调的,可扩展性、纠错能力和实际问题解决能力是量子计算(QC)面临的重要挑战。量子路径计算(QPC)是最近作为一种非常规设计引入的基于线性光学的量子计算方法,旨在实现可扩展性和解决实际问题。它从经典粒子源的多平面衍射(MPD)中获得的指数级增加的传播路径的干涉中采样强度。QPC首次利用基于MPD的路径量子时间相关性以及不同时刻的自由纠缠投影,使用经典光源和强度测量,而无需光子相互作用或单光子源与接收器。在本文中,对光子QPC进行了定义、理论建模和数值分析,适用于任意傅里叶光学或二次相位设置,同时使用高斯和厄米 - 高斯源激光模式。已经扩展了包括黎曼θ函数部分和的问题解决能力。讨论了重要的未来应用、实现挑战和开放问题,如确定量子计算能力范围的通用计算和量子电路实现。这些应用包括达到超过[公式:见原文]费曼路径的量子霸权实验、量子神经元实现以及非线性薛定谔方程的求解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4e5/7335213/02b70089b029/41598_2020_67364_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验