Suppr超能文献

可视化量子电路概率:用于量子程序合成的量子态复杂度估计

Visualizing Quantum Circuit Probability: Estimating Quantum State Complexity for Quantum Program Synthesis.

作者信息

Bach Bao Gia, Kundu Akash, Acharya Tamal, Sarkar Aritra

机构信息

Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City 70000, Vietnam.

Quantum Intelligence Research Team, Department of Quantum & Computer Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands.

出版信息

Entropy (Basel). 2023 May 7;25(5):763. doi: 10.3390/e25050763.

Abstract

This work applies concepts from algorithmic probability to Boolean and quantum combinatorial logic circuits. The relations among the statistical, algorithmic, computational, and circuit complexities of states are reviewed. Thereafter, the probability of states in the circuit model of computation is defined. Classical and quantum gate sets are compared to select some characteristic sets. The reachability and expressibility in a space-time-bounded setting for these gate sets are enumerated and visualized. These results are studied in terms of computational resources, universality, and quantum behavior. The article suggests how applications like geometric quantum machine learning, novel quantum algorithm synthesis, and quantum artificial general intelligence can benefit by studying circuit probabilities.

摘要

这项工作将算法概率的概念应用于布尔和量子组合逻辑电路。回顾了状态的统计、算法、计算和电路复杂度之间的关系。此后,定义了计算电路模型中状态的概率。比较了经典和量子门集以选择一些特征集。列举并可视化了这些门集在时空受限设置下的可达性和可表达性。从计算资源、通用性和量子行为方面研究了这些结果。本文提出,通过研究电路概率,几何量子机器学习、新型量子算法合成和量子通用人工智能等应用如何能够从中受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb1/10216986/ace0fa6b99f0/entropy-25-00763-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验