Institute of Disease Control and Prevention, AMMS , Beijing 100071, P. R. China.
Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China.
ACS Appl Mater Interfaces. 2017 May 10;9(18):15328-15341. doi: 10.1021/acsami.7b03987. Epub 2017 Apr 28.
The increasing occurrence of antibiotic-resistant pathogens, especially superbugs, is compromising the efficacy of traditional antibiotics. Silver nanoparticles (AgNPs) loaded graphene oxide (GO) nanocomposite (GO-Ag) has drawn great interest as a promising alternative antibacterial material. However, GO-Ag nanocomposite often irreversibly aggregates in physiological solutions, severely influencing its antibacterial capacity and practical application. Herein, a PEGylated and AgNPs loaded GO nanocomposite (GO-PEG-Ag) is synthesized through a facile approach utilizing microwave irradiation, while avoiding extra reducing agents. Through PEGylation, the synthesized GO-PEG-Ag nanocomposite dispersed stably over one month in a series of media and resisted centrifugation at 10 000×g for 5 min, which would benefit effective contact between the nanocomposite and the bacteria. In contrast, GO-Ag aggregated within 1 h of dispersion in physiological solutions. In comparison with GO-Ag, GO-PEG-Ag showed stronger bactericidal capability toward not only normal Gram-negative/positive bacteria such as E. coli and S. aureus (∼100% of E. coli and ∼95.3% of S. aureus reduction by 10 μg/mL nanocomposite for 2.5 h), but also superbugs. Moreover, GO-PEG-Ag showed lower cytotoxicity toward HeLa cells. Importantly, GO-PEG-Ag presented long-term antibacterial effectiveness, remaining ∼95% antibacterial activity after one-week storage in saline solution versus <35% for GO-Ag. The antibacterial mechanisms of GO-PEG-Ag were evidenced as damage to the bacterial structure and production of reactive oxygen species, causing cytoplasm leakage and metabolism decrease. The stable GO-PEG-Ag nanocomposite with powerful and long-term antibacterial capability provides a more practical and effective strategy for fighting superbugs-including pathogen threats in biomedicine and public health.
抗生素耐药性病原体(尤其是超级细菌)的发生率不断增加,正在降低传统抗生素的疗效。负载银纳米粒子(AgNPs)的氧化石墨烯(GO)纳米复合材料(GO-Ag)作为一种很有前途的替代抗菌材料引起了极大的兴趣。然而,GO-Ag 纳米复合材料在生理溶液中常常不可逆转地聚集,严重影响其抗菌能力和实际应用。在此,通过一种简便的微波辐射方法,利用微波辐射合成了一种聚乙二醇化和负载 AgNPs 的 GO 纳米复合材料(GO-PEG-Ag),同时避免了额外的还原剂。通过聚乙二醇化,所合成的 GO-PEG-Ag 纳米复合材料在一系列介质中稳定分散超过一个月,并且在 10,000×g 下离心 5 分钟也不会发生团聚,这有利于纳米复合材料与细菌的有效接触。相比之下,GO-Ag 在生理溶液中分散 1 小时内就会发生团聚。与 GO-Ag 相比,GO-PEG-Ag 对正常革兰氏阴性/阳性细菌(如大肠杆菌和金黄色葡萄球菌,10 μg/mL 纳米复合材料作用 2.5 h 后,大肠杆菌的减少率约为 100%,金黄色葡萄球菌的减少率约为 95.3%)和超级细菌具有更强的杀菌能力。此外,GO-PEG-Ag 对 HeLa 细胞的细胞毒性较低。重要的是,GO-PEG-Ag 具有长期的抗菌效果,在生理盐水溶液中储存一周后,其抗菌活性保持在约 95%,而 GO-Ag 的抗菌活性则低于 35%。GO-PEG-Ag 的抗菌机制被证明是破坏细菌结构和产生活性氧,导致细胞质渗漏和代谢减少。具有强大且长期抗菌能力的稳定 GO-PEG-Ag 纳米复合材料为应对超级细菌(包括生物医学和公共卫生领域的病原体威胁)提供了一种更实用、更有效的策略。
ACS Appl Mater Interfaces. 2017-4-28
ACS Appl Mater Interfaces. 2013-4-29
J Mater Sci Mater Med. 2018-5-10
ACS Appl Mater Interfaces. 2015-3-18
ACS Appl Mater Interfaces. 2018-5-16
ACS Appl Mater Interfaces. 2024-4-17
Spectrochim Acta A Mol Biomol Spectrosc. 2017-3-16
Colloids Surf B Biointerfaces. 2019-11-5
Nanoscale Adv. 2025-8-21
Mater Today Bio. 2025-2-5
Pharmaceuticals (Basel). 2024-8-29
Biosensors (Basel). 2024-3-31
J Adv Vet Anim Res. 2023-12-31