Suppr超能文献

使用代谢组学数据预测冠状动脉疾病的机器学习方法评估

Evaluation of Machine Learning Methods to Predict Coronary Artery Disease Using Metabolomic Data.

作者信息

Forssen Henrietta, Patel Riyaz, Fitzpatrick Natalie, Hingorani Aroon, Timmis Adam, Hemingway Harry, Denaxas Spiros

机构信息

Department of Computer Science, UCL.

Institute of Health Informatics, UCL.

出版信息

Stud Health Technol Inform. 2017;235:111-115.

Abstract

Metabolomic data can potentially enable accurate, non-invasive and low-cost prediction of coronary artery disease. Regression-based analytical approaches however might fail to fully account for interactions between metabolites, rely on a priori selected input features and thus might suffer from poorer accuracy. Supervised machine learning methods can potentially be used in order to fully exploit the dimensionality and richness of the data. In this paper, we systematically implement and evaluate a set of supervised learning methods (L1 regression, random forest classifier) and compare them to traditional regression-based approaches for disease prediction using metabolomic data.

摘要

代谢组学数据有可能实现对冠状动脉疾病的准确、非侵入性和低成本预测。然而,基于回归的分析方法可能无法充分考虑代谢物之间的相互作用,依赖于预先选择的输入特征,因此可能准确性较差。监督式机器学习方法有可能被用于充分利用数据的维度和丰富性。在本文中,我们系统地实施和评估了一组监督学习方法(L1回归、随机森林分类器),并将它们与使用代谢组学数据进行疾病预测的传统基于回归的方法进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验