Suppr超能文献

利用机器学习识别儿科慢性肾脏病病因的代谢组学特征。

Using Machine Learning to Identify Metabolomic Signatures of Pediatric Chronic Kidney Disease Etiology.

机构信息

Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.

出版信息

J Am Soc Nephrol. 2022 Feb;33(2):375-386. doi: 10.1681/ASN.2021040538. Epub 2022 Jan 11.

Abstract

BACKGROUND

Untargeted plasma metabolomic profiling combined with machine learning (ML) may lead to discovery of metabolic profiles that inform our understanding of pediatric CKD causes. We sought to identify metabolomic signatures in pediatric CKD based on diagnosis: FSGS, obstructive uropathy (OU), aplasia/dysplasia/hypoplasia (A/D/H), and reflux nephropathy (RN).

METHODS

Untargeted metabolomic quantification (GC-MS/LC-MS, Metabolon) was performed on plasma from 702 Chronic Kidney Disease in Children study participants (: FSGS=63, OU=122, A/D/H=109, and RN=86). Lasso regression was used for feature selection, adjusting for clinical covariates. Four methods were then applied to stratify significance: logistic regression, support vector machine, random forest, and extreme gradient boosting. ML training was performed on 80% total cohort subsets and validated on 20% holdout subsets. Important features were selected based on being significant in at least two of the four modeling approaches. We additionally performed pathway enrichment analysis to identify metabolic subpathways associated with CKD cause.

RESULTS

ML models were evaluated on holdout subsets with receiver-operator and precision-recall area-under-the-curve, F1 score, and Matthews correlation coefficient. ML models outperformed no-skill prediction. Metabolomic profiles were identified based on cause. FSGS was associated with the sphingomyelin-ceramide axis. FSGS was also associated with individual plasmalogen metabolites and the subpathway. OU was associated with gut microbiome-derived histidine metabolites.

CONCLUSION

ML models identified metabolomic signatures based on CKD cause. Using ML techniques in conjunction with traditional biostatistics, we demonstrated that sphingomyelin-ceramide and plasmalogen dysmetabolism are associated with FSGS and that gut microbiome-derived histidine metabolites are associated with OU.

摘要

背景

非靶向血浆代谢组学分析联合机器学习(ML)可能会发现一些代谢特征,从而帮助我们了解小儿 CKD 的病因。我们试图根据诊断确定小儿 CKD 的代谢特征:局灶节段性肾小球硬化症(FSGS)、梗阻性尿路病(OU)、发育不良/发育不全/发育不良(A/D/H)和反流性肾病(RN)。

方法

对 702 名慢性肾脏病儿童研究参与者(FSGS=63、OU=122、A/D/H=109、RN=86)的血浆进行非靶向代谢组定量(GC-MS/LC-MS、Metabolon)。使用套索回归进行特征选择,调整临床协变量。然后应用四种方法进行分层显著性分析:逻辑回归、支持向量机、随机森林和极端梯度提升。ML 训练在 80%的总队列子集中进行,在 20%的保留子集上进行验证。选择至少在四种建模方法中的两种方法中具有显著性的重要特征。我们还进行了途径富集分析,以确定与 CKD 病因相关的代谢亚途径。

结果

在保留子集上评估 ML 模型,使用接收者操作特性和精度-召回率曲线下面积、F1 评分和马修斯相关系数。ML 模型优于无技能预测。基于病因确定代谢组特征。FSGS 与鞘氨醇-神经酰胺轴有关。FSGS 还与单个磷脂代谢物和亚途径有关。OU 与肠道微生物组衍生的组氨酸代谢物有关。

结论

ML 模型根据 CKD 病因确定代谢组特征。使用 ML 技术结合传统生物统计学,我们证明了鞘氨醇-神经酰胺和磷脂代谢异常与 FSGS 有关,肠道微生物组衍生的组氨酸代谢物与 OU 有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a53/8819986/b6eed2030ddd/ASN.2021040538absf1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验