Suppr超能文献

GWAS 数据的网络辅助分析确定了一个与儿童期起病哮喘相关的功能相关基因模块。

Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma.

机构信息

INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France.

Université Paris Diderot, Université Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.

出版信息

Sci Rep. 2017 Apr 20;7(1):938. doi: 10.1038/s41598-017-01058-y.

Abstract

The number of genetic factors associated with asthma remains limited. To identify new genes with an undetected individual effect but collectively influencing asthma risk, we conducted a network-assisted analysis that integrates outcomes of genome-wide association studies (GWAS) and protein-protein interaction networks. We used two GWAS datasets, each consisting of the results of a meta-analysis of nine childhood-onset asthma GWASs (5,924 and 6,043 subjects, respectively). We developed a novel method to compute gene-level P-values (fastCGP), and proposed a parallel dense-module search and cross-selection strategy to identify an asthma-associated gene module. We identified a module of 91 genes with a significant joint effect on childhood-onset asthma (P < 10). This module contained a core subnetwork including genes at known asthma loci and five peripheral subnetworks including relevant candidates. Notably, the core genes were connected to APP (encoding amyloid beta precursor protein), a major player in Alzheimer's disease that is known to have immune and inflammatory components. Functional analysis of the module genes revealed four gene clusters involved in innate and adaptive immunity, chemotaxis, cell-adhesion and transcription regulation, which are biologically meaningful processes that may underlie asthma risk. Our findings provide important clues for future research into asthma aetiology.

摘要

与哮喘相关的遗传因素数量仍然有限。为了确定具有个体影响但共同影响哮喘风险的新基因,我们进行了网络辅助分析,该分析整合了全基因组关联研究(GWAS)和蛋白质-蛋白质相互作用网络的结果。我们使用了两个 GWAS 数据集,每个数据集都由九项儿童期哮喘 GWAS 的荟萃分析结果组成(分别有 5924 和 6043 个个体)。我们开发了一种计算基因水平 P 值的新方法(fastCGP),并提出了一种并行密集模块搜索和交叉选择策略,以识别与哮喘相关的基因模块。我们确定了一个包含 91 个基因的模块,这些基因对儿童期哮喘有显著的共同影响(P<10)。该模块包含一个核心子网,其中包括已知哮喘位点的基因和包含相关候选物的五个外围子网。值得注意的是,核心基因与 APP(编码淀粉样前体蛋白)相连,APP 是阿尔茨海默病的主要参与者,已知其具有免疫和炎症成分。该模块基因的功能分析揭示了四个涉及先天和适应性免疫、趋化性、细胞黏附和转录调节的基因簇,这些都是可能导致哮喘风险的生物学上有意义的过程。我们的研究结果为未来的哮喘发病机制研究提供了重要线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/996a/5430538/58fee8c0c674/41598_2017_1058_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验