Kamp F, Chen Y D, Westerhoff H V
Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, Bethesda, MD 20892.
Biophys Chem. 1988 Jun;30(2):113-32. doi: 10.1016/0301-4622(88)85009-9.
The electric field arising from proton pumping across a topologically closed biological membrane causes accumulation close to the membrane of ionic charges equivalent to the charge of the pumped protons, positive on the side towards which protons are pumped, negative on the other side. We shall call this the 'active surface charge'. We here use the Poisson-Boltzmann equation to evaluate the effects of zwitterionic buffer molecules and uncharged proteins in the aqueous phase bordering the membrane on the magnitude and ionic composition of the active surface charge. For the positive side of the membrane, the main results are: (1) If the membrane is freely accessible to bulk phase ions, pumped protons exchange with these ions, such that the active surface charge consists of salt cations. (2) If a significant fraction of the ions in bulk solution consists of buffer molecules, then some of the pumped protons will remain close to the membrane and constitute a major fraction of the active surface charge. (3) If a protein layer borders the membrane, a significant part of the transmembrane electric potential difference exists within that protein layer and protons inside this layer dominate the active surface charge. (4) On the negative side of the membrane the corresponding phenomena would occur. (5) All these effects are strictly dependent on the transmembrane electric potential difference arising from proton pumping and would come in addition to the well known effects of buffers and electrically charged proteins on the retention of scalar protons. (6) No additional proton diffusion barrier may be required to account for a deficit in number of protons observed in the aqueous bulk phase upon aeration-induced proton pumping.
质子跨拓扑封闭的生物膜泵送所产生的电场,会使与泵送质子电荷等量的离子电荷在膜附近积聚,在质子泵送方向的一侧为正电荷,另一侧为负电荷。我们将此称为“活性表面电荷”。在此,我们使用泊松 - 玻尔兹曼方程来评估在膜相邻水相中两性离子缓冲分子和不带电蛋白质对活性表面电荷的大小和离子组成的影响。对于膜的正侧,主要结果如下:(1)如果膜对本体相离子可自由通透,泵送的质子会与这些离子交换,使得活性表面电荷由盐阳离子组成。(2)如果本体溶液中的很大一部分离子由缓冲分子组成,那么一些泵送的质子将保留在膜附近,并构成活性表面电荷的主要部分。(3)如果蛋白质层与膜相邻,跨膜电势差的很大一部分存在于该蛋白质层内,且该层内的质子主导活性表面电荷。(4)在膜的负侧会发生相应现象。(5)所有这些效应都严格依赖于质子泵送产生的跨膜电势差,并且是除了缓冲剂和带电蛋白质对标量质子保留的众所周知的效应之外的额外影响。(6)对于曝气诱导质子泵送后在水相本体相中观察到的质子数量不足,可能不需要额外的质子扩散屏障来解释。