Suppr超能文献

区分中耳和内侧橄榄耳蜗对瞬态诱发耳声发射的影响。

Differentiating Middle Ear and Medial Olivocochlear Effects on Transient-Evoked Otoacoustic Emissions.

作者信息

Marks Kendra L, Siegel Jonathan H

机构信息

Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208-2952, USA.

出版信息

J Assoc Res Otolaryngol. 2017 Aug;18(4):529-542. doi: 10.1007/s10162-017-0621-0. Epub 2017 Apr 21.

Abstract

The response of the inner ear is modulated by the middle ear muscle (MEM) and olivocochlear (OC) efferent systems. Both systems can be activated reflexively by acoustic stimuli delivered to one or both ears. The acoustic middle ear muscle reflex (MEMR) controls the transmission of acoustic signals through the middle ear, while reflex activation of the medial component of the olivocochlear system (the MOCR) modulates cochlear mechanics. The relative prominence of the two efferent systems varies widely between species. Measuring the effect of either of these systems can be confounded by simultaneously activating the other. We describe a simple, sensitive online method that can identify the effects both systems have on otoacoustic emissions (OAEs) evoked by transient stimuli such as clicks or tone pips (TEOAEs). The method detects directly in the time domain the changes in the stimulus and/or emission pressures caused by contralateral noise. Measurements in human participants are consistent with other reports that the threshold for MOCR activation is consistently lower than for MEMR. The method appears to control for drift and subject-generated noise well enough to avoid the need for post hoc processing, making it promising for application in animal experiments (even if awake) and in the hearing clinic.

摘要

内耳的反应受中耳肌肉(MEM)和橄榄耳蜗(OC)传出系统的调节。这两个系统都可被传递至一耳或双耳的声刺激反射性激活。声中耳肌肉反射(MEMR)控制声信号通过中耳的传输,而橄榄耳蜗系统内侧部分(MOCR)的反射性激活则调节耳蜗力学。这两个传出系统的相对突出程度在不同物种间差异很大。测量其中任何一个系统的效应都可能因同时激活另一个系统而受到干扰。我们描述了一种简单、灵敏的在线方法,该方法可以识别这两个系统对由咔嗒声或短纯音等瞬态刺激诱发的耳声发射(OAEs)(瞬态诱发耳声发射,TEOAEs)所产生的影响。该方法直接在时域中检测由对侧噪声引起的刺激和/或发射压力的变化。在人类受试者中的测量结果与其他报告一致,即MOCR激活的阈值始终低于MEMR。该方法似乎能很好地控制漂移和受试者产生的噪声,无需进行事后处理,因此有望应用于动物实验(即使是清醒动物)和听力诊所。

相似文献

1
Differentiating Middle Ear and Medial Olivocochlear Effects on Transient-Evoked Otoacoustic Emissions.
J Assoc Res Otolaryngol. 2017 Aug;18(4):529-542. doi: 10.1007/s10162-017-0621-0. Epub 2017 Apr 21.
2
Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice.
J Assoc Res Otolaryngol. 2017 Aug;18(4):543-553. doi: 10.1007/s10162-017-0616-x. Epub 2017 Mar 16.
4
Effect of Contralateral Medial Olivocochlear Feedback on Perceptual Estimates of Cochlear Gain and Compression.
J Assoc Res Otolaryngol. 2016 Dec;17(6):559-575. doi: 10.1007/s10162-016-0574-8. Epub 2016 Aug 22.
6
Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions.
J Assoc Res Otolaryngol. 2006 Jun;7(2):125-39. doi: 10.1007/s10162-006-0028-9. Epub 2006 Mar 28.
8
The middle ear muscle reflex in the diagnosis of cochlear neuropathy.
Hear Res. 2016 Feb;332:29-38. doi: 10.1016/j.heares.2015.11.005. Epub 2015 Nov 30.
10
Does hyperandrogenism affect the otoacoustic emissions and medial olivocochlear reflex in female adults?
Otol Neurotol. 2013 Jul;34(5):784-9. doi: 10.1097/MAO.0b013e31828dae3e.

引用本文的文献

1
Brainstem auditory physiology in children with listening difficulties.
Hear Res. 2023 Mar 1;429:108705. doi: 10.1016/j.heares.2023.108705. Epub 2023 Jan 20.
2
The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review.
J Neurophysiol. 2021 Jun 1;125(6):2279-2308. doi: 10.1152/jn.00672.2020. Epub 2021 Apr 28.
3
The characteristic of otoacoustic emissions in full-term neonates according to ABO blood groups.
Braz J Otorhinolaryngol. 2020 Nov-Dec;86(6):774-780. doi: 10.1016/j.bjorl.2019.10.012. Epub 2019 Dec 10.
4
The Medial Olivocochlear Reflex Is Unlikely to Play a Role in Listening Difficulties in Children.
Trends Hear. 2019 Jan-Dec;23:2331216519870942. doi: 10.1177/2331216519870942.
5
Click-Evoked Auditory Efferent Activity: Rate and Level Effects.
J Assoc Res Otolaryngol. 2018 Aug;19(4):421-434. doi: 10.1007/s10162-018-0664-x. Epub 2018 May 7.
6
Effects of cochlear synaptopathy on middle-ear muscle reflexes in unanesthetized mice.
Hear Res. 2018 Jun;363:109-118. doi: 10.1016/j.heares.2018.03.012. Epub 2018 Mar 13.
7
Heightened visual attention does not affect inner ear function as measured by otoacoustic emissions.
PeerJ. 2017 Dec 21;5:e4199. doi: 10.7717/peerj.4199. eCollection 2017.

本文引用的文献

1
Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice.
J Assoc Res Otolaryngol. 2017 Aug;18(4):543-553. doi: 10.1007/s10162-017-0616-x. Epub 2017 Mar 16.
3
Aural Acoustic Stapedius-Muscle Reflex Threshold Procedures to Test Human Infants and Adults.
J Assoc Res Otolaryngol. 2017 Feb;18(1):65-88. doi: 10.1007/s10162-016-0599-z. Epub 2016 Dec 12.
4
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.
J Acoust Soc Am. 2016 Sep;140(3):1949. doi: 10.1121/1.4962532.
5
The middle ear muscle reflex in the diagnosis of cochlear neuropathy.
Hear Res. 2016 Feb;332:29-38. doi: 10.1016/j.heares.2015.11.005. Epub 2015 Nov 30.
7
Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation.
J Assoc Res Otolaryngol. 2015 Jun;16(3):317-29. doi: 10.1007/s10162-015-0513-0. Epub 2015 Mar 27.
9
Influence of the stimulus presentation rate on medial olivocochlear system assays.
J Acoust Soc Am. 2015 Feb;137(2):724-32. doi: 10.1121/1.4906250.
10
Otoacoustic-emission-based medial-olivocochlear reflex assays for humans.
J Acoust Soc Am. 2014 Nov;136(5):2697-713. doi: 10.1121/1.4896745.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验