Suppr超能文献

FBP 重建的多目标核医学图像的自动累积和轮廓检测

Automatic cumulative sums contour detection of FBP-reconstructed multi-object nuclear medicine images.

作者信息

Protonotarios Nicholas E, Spyrou George M, Kastis George A

机构信息

Research Center of Mathematics, Academy of Athens, Athens 11527, Greece; Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece.

Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece; Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Ayios Dometios, 2370 Nicosia, Cyprus.

出版信息

Comput Biol Med. 2017 Jun 1;85:43-52. doi: 10.1016/j.compbiomed.2017.04.010. Epub 2017 Apr 14.

Abstract

The problem of determining the contours of objects in nuclear medicine images has been studied extensively in the past, however most of the analysis has focused on a single object as opposed to multiple objects. The aim of this work is to develop an automated method for determining the contour of multiple objects in positron emission tomography (PET) and single photon emission computed tomography (SPECT) filtered backprojection (FBP) reconstructed images. These contours can be used for computing body edges for attenuation correction in PET and SPECT, as well as for eliminating streak artifacts outside the objects, which could be useful in compressive sensing reconstruction. Contour detection has been accomplished by applying a modified cumulative sums (CUSUM) scheme in the sinogram. Our approach automatically detects all objects in the image, without requiring a priori knowledge of the number of distinct objects in the reconstructed image. This method has been tested in simulated phantoms, such as an image-quality (IQ) phantom and two digital multi-object phantoms, as well as a real NEMA phantom and a clinical thoracic study. For this purpose, a GE Discovery PET scanner was employed. The detected contours achieved root mean square accuracy of 1.14 pixels, 1.69 pixels and 3.28 pixels and a Hausdorff distance of 3.13, 3.12 and 4.50 pixels, for the simulated image-quality phantom PET study, the real NEMA phantom and the clinical thoracic study, respectively. These results correspond to a significant improvement over recent results obtained in similar studies. Furthermore, we obtained an optimal sub-pattern assignment (OSPA) localization error of 0.94 and 1.48, for the two-objects and three-objects simulated phantoms, respectively. Our method performs efficiently for sets of convex objects and hence it provides a robust tool for automatic contour determination with precise results.

摘要

过去,核医学图像中物体轮廓的确定问题已得到广泛研究,然而,大多数分析都集中在单个物体上,而非多个物体。这项工作的目的是开发一种自动方法,用于确定正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)滤波反投影(FBP)重建图像中多个物体的轮廓。这些轮廓可用于计算PET和SPECT中衰减校正的身体边缘,以及消除物体外部的条纹伪影,这在压缩感知重建中可能会有用。轮廓检测是通过在正弦图中应用改进的累积和(CUSUM)方案来完成的。我们的方法能自动检测图像中的所有物体,无需事先了解重建图像中不同物体的数量。该方法已在模拟体模中进行了测试,如图像质量(IQ)体模和两个数字多物体体模,以及真实的NEMA体模和一项临床胸部研究。为此,使用了一台GE Discovery PET扫描仪。对于模拟图像质量体模PET研究、真实NEMA体模和临床胸部研究,检测到的轮廓的均方根精度分别为1.14像素、1.69像素和3.28像素,豪斯多夫距离分别为3.13像素、3.12像素和4.50像素。这些结果与近期类似研究中获得的结果相比有显著改进。此外,对于两物体和三物体模拟体模,我们分别获得了0.94和1.48的最优子模式分配(OSPA)定位误差。我们的方法对凸物体集能高效执行,因此它为精确自动确定轮廓提供了一个强大工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验