Heun Yvonn, Pogoda Kristin, Anton Martina, Pircher Joachim, Pfeifer Alexander, Woernle Markus, Ribeiro Andrea, Kameritsch Petra, Mykhaylyk Olga, Plank Christian, Kroetz Florian, Pohl Ulrich, Mannell Hanna
Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany.
Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany.
Mol Ther. 2017 Jul 5;25(7):1616-1627. doi: 10.1016/j.ymthe.2017.04.007. Epub 2017 Apr 20.
Hypoxia promotes vascularization by stabilization and activation of the hypoxia inducible factor 1α (HIF-1α), which constitutes a target for angiogenic gene therapy. However, gene therapy is hampered by low gene delivery efficiency and non-specific side effects. Here, we developed a gene transfer technique based on magnetic targeting of magnetic nanoparticle-lentivirus (MNP-LV) complexes allowing site-directed gene delivery to individual wounds in the dorsal skin of mice. Using this technique, we were able to control HIF-1α dependent wound healing angiogenesis in vivo via site-specific modulation of the tyrosine phosphatase activity of SHP-2. We thus uncover a novel physiological role of SHP-2 in protecting HIF-1α from proteasomal degradation via a Src kinase dependent mechanism, resulting in HIF-1α DNA-binding and transcriptional activity in vitro and in vivo. Excitingly, using targeting of MNP-LV complexes, we achieved simultaneous expression of constitutively active as well as inactive SHP-2 mutant proteins in separate wounds in vivo and hereby specifically and locally controlled HIF-1α activity as well as the angiogenic wound healing response in vivo. Therefore, magnetically targeted lentiviral induced modulation of SHP-2 activity may be an attractive approach for controlling patho-physiological conditions relying on hypoxic vessel growth at specific sites.
缺氧通过稳定和激活缺氧诱导因子1α(HIF-1α)促进血管生成,HIF-1α是血管生成基因治疗的一个靶点。然而,基因治疗受到低基因递送效率和非特异性副作用的阻碍。在此,我们开发了一种基于磁性纳米颗粒-慢病毒(MNP-LV)复合物磁性靶向的基因转移技术,可将基因定点递送至小鼠背部皮肤的单个伤口。利用该技术,我们能够通过对SHP-2酪氨酸磷酸酶活性的位点特异性调节,在体内控制HIF-1α依赖性伤口愈合血管生成。因此,我们发现了SHP-2的一种新的生理作用,即通过一种Src激酶依赖性机制保护HIF-1α免受蛋白酶体降解,从而在体外和体内产生HIF-1α的DNA结合和转录活性。令人兴奋的是,通过靶向MNP-LV复合物,我们在体内不同伤口中实现了组成型活性和非活性SHP-2突变蛋白的同时表达,从而在体内特异性地局部控制了HIF-1α活性以及血管生成性伤口愈合反应。因此,磁性靶向慢病毒诱导的SHP-2活性调节可能是一种有吸引力的方法,用于控制依赖于特定部位缺氧血管生长的病理生理状况。