Liu Jianbo, Ramakrishnan Sridhar, Laxminarayan Srinivas, Balkin Thomas J, Reifman Jaques
Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, MD, USA.
Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
J Sleep Res. 2017 Dec;26(6):820-831. doi: 10.1111/jsr.12535. Epub 2017 Apr 24.
Existing mathematical models for predicting neurobehavioural performance are not suited for mobile computing platforms because they cannot adapt model parameters automatically in real time to reflect individual differences in the effects of sleep loss. We used an extended Kalman filter to develop a computationally efficient algorithm that continually adapts the parameters of the recently developed Unified Model of Performance (UMP) to an individual. The algorithm accomplishes this in real time as new performance data for the individual become available. We assessed the algorithm's performance by simulating real-time model individualization for 18 subjects subjected to 64 h of total sleep deprivation (TSD) and 7 days of chronic sleep restriction (CSR) with 3 h of time in bed per night, using psychomotor vigilance task (PVT) data collected every 2 h during wakefulness. This UMP individualization process produced parameter estimates that progressively approached the solution produced by a post-hoc fitting of model parameters using all data. The minimum number of PVT measurements needed to individualize the model parameters depended upon the type of sleep-loss challenge, with ~30 required for TSD and ~70 for CSR. However, model individualization depended upon the overall duration of data collection, yielding increasingly accurate model parameters with greater number of days. Interestingly, reducing the PVT sampling frequency by a factor of two did not notably hamper model individualization. The proposed algorithm facilitates real-time learning of an individual's trait-like responses to sleep loss and enables the development of individualized performance prediction models for use in a mobile computing platform.
现有的用于预测神经行为表现的数学模型并不适用于移动计算平台,因为它们无法实时自动调整模型参数以反映睡眠剥夺影响方面的个体差异。我们使用扩展卡尔曼滤波器开发了一种计算效率高的算法,该算法能持续使最近开发的统一绩效模型(UMP)的参数适应个体情况。随着个体的新绩效数据可用,该算法能实时完成这一过程。我们通过模拟18名受试者的实时模型个体化来评估该算法的性能,这些受试者经历了64小时的完全睡眠剥夺(TSD)以及每晚卧床3小时的7天慢性睡眠限制(CSR),使用清醒期间每2小时收集一次的精神运动警觉任务(PVT)数据。这种UMP个体化过程产生的参数估计值逐渐接近使用所有数据进行模型参数事后拟合所得到的结果。个体化模型参数所需的PVT测量的最小数量取决于睡眠剥夺挑战的类型,TSD约需30次,CSR约需70次。然而,模型个体化取决于数据收集的总时长,数据收集天数越多,模型参数就越准确。有趣的是,将PVT采样频率降低一半并不会显著妨碍模型个体化。所提出的算法有助于实时了解个体对睡眠剥夺的特质性反应,并能开发用于移动计算平台的个性化绩效预测模型。