Center for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, 169857, Singapore.
Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, 169857, Singapore.
Sci Rep. 2019 Aug 20;9(1):12102. doi: 10.1038/s41598-019-48280-4.
There are strong individual differences in performance during sleep deprivation. We assessed whether baseline features of Psychomotor Vigilance Test (PVT) performance can be used for classifying participants' relative attentional vulnerability to total sleep deprivation. In a laboratory, healthy adults (n = 160, aged 18-30 years) completed a 10-min PVT every 2 h while being kept awake for ≥24 hours. Participants were categorized as vulnerable (n = 40), intermediate (n = 80), or resilient (n = 40) based on their number of PVT lapses during one night of sleep deprivation. For each baseline PVT (taken 4-14 h after wake-up time), a linear discriminant model with wrapper-based feature selection was used to classify participants' vulnerability to subsequent sleep deprivation. Across models, classification accuracy was about 70% (range 65-76%) using stratified 5-fold cross validation. The models provided about 78% sensitivity and 86% specificity for classifying resilient participants, and about 70% sensitivity and 89% specificity for classifying vulnerable participants. These results suggest features derived from a single 10-min PVT at baseline can provide substantial, but incomplete information about a person's relative attentional vulnerability to total sleep deprivation. In the long term, modeling approaches that incorporate baseline performance characteristics can potentially improve personalized predictions of attentional performance when sleep deprivation cannot be avoided.
在睡眠剥夺期间,个体的表现存在明显差异。我们评估了警觉性测试(PVT)的基线特征是否可用于对参与者对完全睡眠剥夺的相对注意力脆弱性进行分类。在实验室中,健康成年人(n=160,年龄 18-30 岁)在保持清醒 24 小时以上的过程中,每 2 小时完成一次 10 分钟的 PVT。根据他们在一夜睡眠剥夺期间 PVT 失误的次数,参与者被分为易损组(n=40)、中间组(n=80)或弹性组(n=40)。对于每个基线 PVT(在醒来后 4-14 小时之间进行),使用基于包装器的特征选择的线性判别模型来对参与者对随后的睡眠剥夺的易损性进行分类。在跨模型中,使用分层 5 倍交叉验证的分类准确性约为 70%(范围 65-76%)。这些模型对弹性参与者的分类具有约 78%的敏感性和 86%的特异性,对易损参与者的分类具有约 70%的敏感性和 89%的特异性。这些结果表明,基线时单次 10 分钟 PVT 得出的特征可以提供关于个体对完全睡眠剥夺的相对注意力脆弱性的大量但不完整的信息。从长期来看,结合基线性能特征的建模方法可能会提高无法避免睡眠剥夺时注意力表现的个性化预测能力。